next up previous [pdf]

Next: Write your own code Up: From modeling to full Previous: Some of the most

Forward modeling

The wave equation we consider in this course material

$\displaystyle (\frac{1}{v^2}\partial_t^2 - \nabla^2 ) p=f$ (1)

Omitting the source, extrapolate your wavefield:

$\displaystyle p^{k+1}=2p^{k}-p^{k-1}+\Delta t^2 v^2 \nabla^2 p^k$ (2)

where

$\displaystyle \nabla^2 p= \frac{p[ix][iz+1]-2p[ix][iz]+p[ix][iz-1]}{\Delta z^2} +\frac{p[ix-1][iz]-2p[ix][iz]+p[ix-1][iz]}{\Delta x^2}$ (3)

The Clayton-Enquist absorbing boundary condition (ABC) (Clayton and Engquist, 1977)

left boundary$\displaystyle :\frac{\partial^2 p}{\partial x\partial t}-\frac{1}{v}\frac{\partial^2 p}{\partial t^2}=\frac{v}{2}\frac{\partial^2 p}{\partial z^2}$ (4)

The codes in every time step looks like \begin{lstlisting}
//dtz=dt/dz; dtx=dt/dx
void step_forward(float **p0, float *...
...2*=v2;
p2[ix][iz]=2.0*p1[ix][iz]-p0[ix][iz]+diff1+diff2;
}
}
\end{lstlisting}



Subsections


2021-08-31