Day: February 28, 2020

Dealiased seismic data reconstruction

February 28, 2020 Documentation No comments

A new paper is added to the collection of reproducible documents: One-step slope estimation for dealiased seismic data reconstruction via iterative seislet thresholding

The seislet transform can be used to interpolate regularly under-sampled seismic data if an accurate local slope map can be obtained. The dealiasing capability of such method highly depends on the accuracy of the estimated local slope, which can be achieved by using the low-frequency components of the aliased seismic data in an iterative manner. Previous approaches to solving this problem have been limited to the unstable estimation of local slope via a large number of iterations. Here, we propose a new way to obtain the slope estimation. We first estimate the NMO velocity and then use a velocity-slope transformation to get the optimal local slope. The new method allows us to avoid the iterative slope estimation and can obtain an accurate slope field in one step. The one-step slope estimation can significantly accelerate the iterative seislet domain thresholding process and can also stabilize the iterative inversion. Both synthetic and field data examples are used to demonstrate the performance by using the proposed approach compared with alternative approaches.

Dip-separated structural filtering

February 28, 2020 Documentation No comments

A new paper is added to the collection of reproducible documents: Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

Irregular seismic data reconstruction

February 28, 2020 Documentation No comments

A new paper is added to the collection of reproducible documents: Irregular seismic data reconstruction using a percentile-half-thresholding algorithm

In this paper, a percentile-half-thresholding approach is proposed in the transformed domain thresholding process for iterative shrinkage thresholding (IST). The percentile-thresholding strategy is more convenient for implementing than the constant-value, linear-decreasing, or exponential-decreasing thresholding because it’s data-driven. The novel half-thresholding strategy is inspired from the recent advancement in the researches on optimization using non-convex regularization. We summarize a general thresholding framework for IST and show that the only difference between half thresholding and the conventional soft or hard thresholding lays in the thresholding operator. Thus it’s straightforward to insert the existing percentile-thresholding strategy to the half-thresholding iterative framework. We use both synthetic and field data examples to compare the performances using soft thresholding or half thresholding with constant threshold or percentile threshold. Synthetic and field data show consistent results that apart from the threshold-setting convenience, the percentile thresholding also has the possibility for improving the recovery performance. Compared with soft thresholding, half thresholding tends to have a more precise reconstructed result.