Day: November 16, 2018

Matching and merging seismic images

November 16, 2018 Celebration No comments

A new paper is added to the collection of reproducible documents: Matching and merging high-resolution and legacy seismic images

When multiple seismic surveys are acquired over the same area using different technologies that produce data with different frequency content, it may be beneficial to combine these data to produce a broader bandwidth volume. In this paper, we propose a workflow for matching and blending seismic images obtained from shallow high-resolution seismic surveys and conventional surveys conducted over the same area. The workflow consists of three distinct steps: (a) balancing the amplitudes and frequency content of the two images by non-stationary smoothing of the high-resolution image; (b) estimating and removing variable time shifts between the two images; and (c) blending the two images together by least-squares inversion. The proposed workflow is applied successfully to images from the Gulf of Mexico.

Fast time-to-depth conversion

November 16, 2018 Celebration No comments

A new paper is added to the collection of reproducible documents: Fast time-to-depth conversion and interval velocity estimation in the case of weak lateral variations

Time-domain processing has a long history in seismic imaging and has always been a powerful workhorse that is routinely utilized. It generally leads to an expeditious construction of the subsurface velocity model in time, which can later be expressed in the Cartesian depth coordinates via a subsequent time-to-depth conversion. The conventional practice of such conversion is done using Dix inversion, which is exact in the case of laterally homogeneous media. For other media with lateral heterogeneity, the time-to-depth conversion involves solving a more complex system of partial differential equations (PDEs). In this study, we propose an efficient alternative for time-to-depth conversion and interval velocity estimation based on the assumption of weak lateral velocity variations. By considering only first-order perturbative effects from lateral variations, the exact system of PDEs required to accomplish the exact conversion reduces to a simpler system that can be solved efficiently in a layer-stripping (downward-stepping) fashion. Numerical synthetic and field data examples show that the proposed method can achieve reasonable accuracy and is significantly more efficient than previously proposed method with a speedup by an order of magnitude.