A new paper is added to the collection of reproducible documents: Deblending using a space-varying median filter

Deblending is a currently popular method for dealing with simultaneous-source seismic data. Removing blending noise while preserving as much useful signal as possible is the key to the deblending process. In this paper, I propose to use space-varying median filter (SVMF) to remove blending noise. I demonstrate that this filtering method preserves more useful seismic reflection than does the conventional version of median filter (MF). In SVMF, I use signal reliability (SR) as a reference to pick up the blending spikes and increase the window length in order to attenuate the spikes. When useful signals are identified, the window length is decreased in order to preserve more energy. The SR is defined as the local similarity between the data initially filtered using MF and the original noisy data. In this way, SVMF can be regionally adaptive, instead of rigidly using a constant window length through the whole profile for MF. Synthetic and field-data examples demonstrate excellent performance for my proposed method.