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ABSTRACT

In certain seismic data processing and interpretation tasks, such as spiking de-
convolution, tuning analysis, impedance inversion, spectral decomposition, etc.,
it is commonly assumed that the vertical direction is normal to reflectors. This
assumption is false in the case of dipping layers and may therefore lead to in-
accurate results. To overcome this limitation, we propose a coordinate system
in which geometry follows the shape of each reflector and the vertical direction
corresponds to normal reflectivity. We call this coordinate system stratigraphic
coordinates. We develop a constructive algorithm that transfers seismic images
into the stratigraphic coordinate system. The algorithm consists of two steps.
First, local slopes of seismic events are estimated by plane-wave destruction; then
structural information is spread along the estimated local slopes, and horizons
are picked everywhere in the seismic volume by the predictive-painting algorithm.
These picked horizons represent level sets of the first axis of the stratigraphic co-
ordinate system. Next, an upwind finite-difference scheme is used to find the two
other axes, which are perpendicular to the first axis, by solving the appropriate
gradient equations. After seismic data are transformed into stratigraphic coordi-
nates, seismic horizons should appear flat, and seismic traces should represent the
direction normal to the reflectors. Immediate applications of the stratigraphic
coordinate system are in seismic image flattening and spectral decomposition.
Synthetic and real data examples demonstrate the effectiveness of stratigraphic
coordinates.

INTRODUCTION

In certain seismic data processing and interpretation tasks, such as spiking deconvo-
lution, tuning analysis, impedance inversion, spectral decomposition, etc., it is com-
monly assumed that the vertical direction is normal to reflectors. This assumption
does not hold true in the case of dipping layers and may therefore lead to inaccurate
results (Guo and Marfurt, 2010). Mallet (2004) defined a mathematical framework,
called GeoChron, for transforming the geologic space into a new space in which all
horizons appear flat, and faults, if any, disappear. In this paper, we propose the
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stratigraphic coordinate system, in which geometry follows the shape of each reflector
and the vertical direction corresponds to normal reflectivity .

Flattening post-stack seismic data is an immediate use of the proposed coordinate
system. Flattened seismic images facilitate the interpreter’s ability to extract detailed
stratigraphic information from the seismic data. In interpretational applications, sev-
eral different algorithms for image flattening have been developed by different authors.
The idea of seismic image flattening by extracting stratal slices was introduced by
Zeng et al. (1998). Automatic picking of horizons using local shifts was studied by
Bienati and Spagnolini (1999) and Stark (2005). Lomask et al. (2006) and Parks
(2010) presented inversion methods in which horizons are calculated on the basis
of local slopes and are then used to flatten seismic events. Fomel (2010) proposed
the method of predictive painting that uses the prediction operators extracted by
plane-wave destruction to spread information inside the seismic volume recursively.

Conventionally, seismic image flattening is performed by shifting samples in the
original image up or down - in other words, differentially stretching and squeezing the
original image in order to flatten the reflection events. Luo and Hale (2013) proposed
a method for image flattening that uses the vector shift field instead of the scalar field
of vertical shifts to define deformations in the image. Flattening by vector shift uses
either vertical shear or rotation or a combination of the two, depending on the type
of geologic deformation.

The stratigraphic coordinate system, introduced in this paper, represents a new
framework for seismic interpretation and processing. To construct stratigraphic co-
ordinates, we combine predictive painting with an upwind finite-difference scheme
(Franklin and Harris, 2001) for solving relevant gradient equations. The stratigraphic
coordinate system is semi-orthogonal; i.e., picked horizons that are level sets of the
first axis are orthogonal to the other two axes. In other words, stratigraphic coordi-
nates are aligned with horizons, and the vertical direction in stratigraphic coordinates
corresponds to the direction normal to the major reflection boundaries. Application
of the stratigraphic coordinate system is not limited to seismic image flattening and
may be extended to many data processing and interpretation tasks in which the ver-
tical direction is commonly assumed to be normal to reflection boundaries: a crude
assumption in all structures but flat geology. In the following sections, we start
by describing a constructive algorithm for generating stratigraphic coordinates. We
then illustrate applications of the stratigraphic coordinate system to seismic image
flattening and spectral decomposition using synthetic and field data examples.

THEORY

In order to define the first step for transformation to stratigraphic coordinates, we
follow the predictive-painting algorithm (Fomel, 2010), which is reviewed in appendix
A. Predictive painting spreads the time values along a reference trace into the seis-
mic volume to output the relative geologic age attribute (Zy(x,y,z)). The painted
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horizons output by predictive painting are used as the first axis of our stratigraphic
coordinate system. Several alternative methods exist to track horizons automatically
in a seismic volume and produce horizon cubes (Hoyes and Cheret, 2011; Wolak et al.,
2013). We choose predictive painting because of its simplicity and efficiency.

In the next step, we find the two other axes, X (z,y, z) and Yy (z,y, ), orthogonal
to the first axis, Zy (z,y, z), by numerically solving the following gradient equations:

VZ-VX,=0 (1)
and

Equations 1 and 2 simply state that the Xy and Yy axes should be perpendicular to
Zy. We can define the boundary condition for the first gradient equation (equation
1) as

XO (Z'a Y, O) = (3>
and the boundary condition for equation 2 as
Yo (z,9,0) =y. (4)

These two boundary conditions mean that the stratigraphic coordinate system and
the regular coordinate system (x,y, z) become equivalent at the surface (z = 0).

The stratigraphic coordinates are originally designed for depth images. When
applied to time-domain images, the definition of the gradient operator becomes

0 0 00z
V=|— —, == 5
<8x’8y’828t>’ )
so a scaling factor with dimensions of velocity-squared is needed in equations 1 and
2.

Algorithm

In summary, our algorithm for transferring seismic images from the regular Cartesian
coordinate system into the stratigraphic coordinate system consists of the following
steps:

1. Extract the first axis of the stratigraphic coordinate system Zj (z,y, z) from
seismic image P (z,y,z) by predictive painting;

2. Start with X at (z = 0) as an initial value and solve equation 1 with boundary
condition 3 numerically for Xj;

3. Start with Yj at (z = 0) as an initial value and solve equation 2 with boundary
condition 4 numerically for Yj.

We solve equations 1 and 2 numerically with an explicit upwind finite-difference
scheme (Franklin and Harris, 2001; Li and Fomel, 2013).
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EXAMPLES OF STRATIGRAPHIC COORDINATES

For a simple illustration of stratigraphic coordinates, we use a 2D synthetic seismic
image from Claerbout (2006), which contains layers with sinusoidal dip variations,
faulted and truncated by an unconformity, and dipping beds with constant slope above
the unconformity (Figure 1a). Figure 1b shows local slopes measured by plane-wave
destruction and delineates the slope field variation. Figure 2a shows automatically
picked horizons obtained by the predictive-painting algorithm. After solving the
gradient equation 1, we acquire the other axis of the stratigraphic coordinate sys-
tem (Figure 2b). Figure 3a shows the stratigraphic coordinates grid overlain on the
regular Cartesian coordinates of the seismic image. Complex tectonic deformations
expressed in faults and folds cannot in general be undone by a simple vertical stretch
and squeeze operator. In contrast, the transformation to stratigraphic coordinates
allows for complex displacements, which can better capture and thus undo non-trivial
tectonic deformations. Arrows in Figure 3b show the amount and direction of shift
that it takes for different samples to be transformed from their original position in
the seismic image to their corresponding positions in the flattened image through the
stratigraphic coordinates algorithm. For comparison, arrows in Figure 3c represent
how different samples shift under conventional flattening methods. The seismic image
gets flattened when the data from the regular coordinate system are transferred to
stratigraphic coordinates. The result is shown in Figure 4a. Apart from the struc-
tural (fault) and stratigraphic (erosional truncation) discontinuities, the input image
is successfully flattened. Figure 4b shows that by returning from stratigraphic coor-
dinates to regular coordinates, one can recostruct the features of the original image
effectively.

Figure 5a shows the input image for a field-data test reproduced from Lomask et al.
(2006) and Fomel (2010). The input is a depth-migrated 3-D image with structural
folding and angular unconformities. The three axes of the stratigraphic coordinates
are shown in Figure 6. Figure 7a displays the image in the regular Cartesian co-
ordinates overlain by its stratigraphic coordinates grid. The flattened image in the
stratigraphic coordinate system, shown in Figure 7b, can be transferred back to the
regular Cartesian coordinates to reconstruct the original image (Figure 7c).

APPLICATION OF STRATIGRAPHIC COORDINATES
TO SPECTRAL DECOMPOSITION

Improving the accuracy of spectral decomposition is one of the possible applications
of the stratigraphic coordinate system. Spectral decomposition is a window-based
analysis to characterize the reflecting wavelet of an interpretation target and refers
to any method that produces a continuous time-frequency analysis of a seismic trace
(Partyka and Lopez, 1999). According to the convolutional model, seismic traces are
considered as normal-incidence 1D seismograms, which is true in the case of horizontal
layers and allows for capturing the signal wavelet while performing spectral decompo-
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Figure 1: (a) Synthetic seismic image from Claerbout (2006). (b) Local slopes mea-

sured by plane-wave destruction.
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Figure 2: (a) First axis (Zy) of stratigraphic coordinates in the regular coordinates
obtained by predictive painting. (b) Second axis (Xj) of the stratigraphic coordinate
system acquired by solving the gradient equation (equation 1).
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Figure 3: (a) Two axes of the stratigraphic coordinate system relative to the regular
coordinate system. The synthetic image with corresponding shift represented by

red arrows through using stratigraphic coordinates (b) and conventional flattening
methods (c).
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Figure 4: (a) Synthetic image from Figure la flattened by transferring the image to
the stratigraphic coordinate system. (b) Unflattened synthetic image reconstruction
by returning from stratigraphic coordinates to regular coordinates.
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Figure 5: (a) North Sea image from Lomask et al. (2006) and its inline (b) and
cross-line (c¢) slopes estimated by plane-wave destruction.
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Figure 6: (a) First axis (Zy), (b) second axis (Xj), and (c) third axis (Yp) of strati-
graphic coordinates in the North Sea image.
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Figure 7: (a) Three axes of stratigraphic coordinates of Figure 5a plotted as a grid in
their Cartesian coordinates. (b) North Sea image after flattening (transferring image
to stratigraphic coordinates). (c) North Sea image reconstruction by returning from
stratigraphic coordinates to regular coordinates.
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sition along the seismic trace. However, when the subsurface exhibits dipping layers,
the convolutional model no longer holds true, and sampling the seismic waveform
vertically instead of perpendicularly to reflectors introduces a dip-dependent stretch
that will carry over to any frequency estimation or spectral decomposition. Guo and
Marfurt (2010) proposed to solve this problem by sampling the signal wavelet along
the ray-path on which the wavelet travels. Because this path is normal to reflectors,
we implement the same idea by employing the stratigraphic coordinate system, which
honors the convolutional model and can capture and analyze seismic waveforms per-
pendicularly to seismic reflectors. Figure 8 shows Gulf of Mexico data reproduced
from Lomask et al. (2006) and Liu et al. (2011) that contain a salt dome and horizons
that dip steeply on the flank of the dome because of the salt piercement. Following
Liu et al. (2011) we calculated the spectral decomposition of the data in the Carte-
sian coordinate system. Figure 9 shows horizon slices from spectral decomposition
calculated in the Cartesian coordinate system at different frequencies because depo-
sitional elements of different thicknesses tune it at different frequencies. Figure 10
also shows the same horizon slices as Figure 9, but this time from spectral decom-
position calculated in the stratigraphic coordinate system. Compared with horizon
slices in Figure 9, those from spectral decomposition calculated in the stratigraphic
coordinate system better highlight detailed geologic features such as sand channels.
That is because in the stratigraphic coordinates seismic horizons get flattened and
the vertical direction corresponds to the normal direction to reflectors. We can there-
fore analyze the unbiased seismic wavefrom and achieve a more accurate spectral
decomposition result. Indeed, since seismic reflectors appear flat in the stratigraphic
coordinate system, (vertical) trace analysis methods such as spectral decomposition
probe the unbiased seismic waveform and thus yield more accurate measurements
and attributes. Conversely, methods such as post-stack seismic inversion, spiking
deconvolution, tuning analysis, etc., usually assume that layers are flat and might
therefore lead interpreters to incur errors in the presence of dips. The same methods,
just like spectral decomposition, may benefit from being applied in the stratigraphic
coordinate system and thereby produce results unbiased by structural dip.

DISCUSSION AND CONCLUSIONS

We have introduced the stratigraphic coordinate system, a novel framework for seismic
interpretation. Our algorithm for constructing the stratigraphic coordinate system
consists of two steps. In the first step, we use predictive painting to produce an
implicit horizon volume that defines the first axis of the stratigraphic coordinates,
aligned with reflection boundaries (seismic horizons). We obtain the remaining two
axes of the stratigraphic coordinate system by solving the relevant gradient equations
using an upwind finite-difference scheme. Seismic image flattening is an immediate ap-
plication of stratigraphic coordinates. Other possible applications include post-stack
impedance inversion, tuning analysis, spiking deconvolution, or any other process
that implicitly assumes that reflectors are flat or that the seismic waveforms should
be sampled vertically. In all structures but layercake geology, trace-based attributes
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Figure 8: Seismic image from Gulf of Mexico. (a) Time slice. (b) Inline section. (c)
Cross-line section.
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Figure 9: Horizon slices from spectral decomposition at (a) 10 Hz, (b) 20 Hz, (c) 30
Hz, and (d) 40 Hz in Cartesian coordinate system.
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Figure 10: Horizon slices from spectral decomposition at (a) 10 Hz, (b) 20 Hz, (c) 30
Hz, and (d) 40 Hz in stratigraphic coordinate system. The 30 Hz slice most clearly
displays visible channel features (red arrows).
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can be biased in the presence of dipping layers. In contrast, the stratigraphic coordi-
nate system offers a local reference frame naturally oriented to sample the unbiased
seismic waveform and, hence, promises to yield more accurate waveform analysis and
trace attributes.

Our implementation of stratigraphic coordinates is based on the predictive-painting
algorithm, which produces the best results when traces can be predicted by their
neighbors. Note that the predictive-painting algorithm may fail to capture some of
the events across structural or stratigraphic discontinuities. Also, in the presence
of crossing dips or incoherent events, predictive painting is susceptible to errors and
warrants further improvement.
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APPENDIX A: PREDICTIVE PAINTING

In the most general case, the predictive-painting method (Fomel, 2010) can be de-
scribed as follows:

Local spatially-variable inline and cross-line slopes of seismic events are estimated
by the plane-wave destruction method (Fomel, 2002). Plane-wave destruction origi-
nates from a local plane-wave model for characterizing seismic data, which is based
on the plane-wave differential equation (Claerbout, 1992):

0P 0P

Here P (t,z) is the seismic wave-field at time ¢ and location z, and o is the local
slope, which can be either constant or variable in both time and space. The local
plane differential equation can easily be solved where the slope is constant, and it has
a simple general solution

P(t,z)=f(t—ox), (A-2)

where f (t) is an arbitrary waveform. Equation A-2 is just a mathematical de-
scription of a plane wave. In the case of variable slopes, a local operator is designed
to propagate each trace to its neighbors by shifting seismic events along their local
slopes.

By writing the plane-wave destruction operation in the linear operator notation,
we have
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r = Ds, (A-3)
where s is a seismic section as a collection of traces g = [s182... sN]T), r is the
destruction residual, and D is the destruction operator, defined as
I 0 0 0
Py I 0 0
D = 0 —Py3 1 0 (A-4)
0 0 . —Pynoaan 1

I is the identity operator, and P;; is an operator that predicts trace j from
trace 7. By minimizing the prediction residual r using least-squares optimization
and smooth regularization, the dominant slopes will be obtained. For 3D structure
characterization, a pair of inline and crossline slopes, o,(¢,z,y) and o,(t,z,y), and
a pair of destruction operators, D, and D,, are required. The prediction of trace s
from reference trace s, can be defined as P, s,, where

Pr,k - Pk—l,k cee Pr+1,r+2Pr,'r+1' (A_5)

This is a simple recursion, and P, ; is called the predictive-painting operator. After
obtaining elementary prediction operators in equation A-4 by plane-wave destruction,
predictive painting spreads the information contained in a seed trace to its neighbors
by following the local slope of seismic events. In order to be able to paint all events
in the seismic volume, one can use multiple references and average painting values
extrapolated from different reference traces.
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