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ABSTRACT

The seislet transform utilizes the wavelet-lifting scheme and local slopes to an-
alyze the seismic data. In its definition, the designing of prediction operators
specifically for seismic images and data is an important issue. We propose a new
formulation of the seislet transform based on the relative time (RT) attribute.
This method uses RT volume to construct multiscale prediction operators. With
the new prediction operators, the seislet transform gets accelerated since distant
traces get predicted directly. We apply the proposed method to synthetic and
real data to demonstrate that the new approach reduces computational cost and
obtains excellent sparse representation on test datasets.

INTRODUCTION

Sparse transforms aim to represent the most important information of an image
with few coefficients in the transform domain while obtaining a good quality ap-
proximation of the original image. Over the past several decades, different types of
wavelet-like transforms have been proposed and successfully applied in image com-
pression and denoising (Hennenfent and Herrmann, 2006; Li and Gao, 2013), including
curvelets (Starck et al., 2002; Ma and Plonka, 2010), contourlets (Do and Vetterli,
2005), shearlets (Labate et al., 2005), directionlets (Velisavljevic et al., 2006), ban-
delets (Le Pennec and Mallat, 2005). The strong anisotropic selectivity of these
wavelet-like transforms helps achieve excellent data compression and accurate recon-
struction for seismic images.

Fomel and Liu (2010) introduced the seislet transform, which is a digital wavelet-
like transform designed specifically for seismic data. Based on the lifting scheme used
in digital wavelet transform (DWT) construction (Sweldens, 1995), the seislet trans-
form follows dominant local slopes obtained by plane-wave destruction (PWD) (Claer-
bout, 2000; Fomel, 2002) to predict seismic events. Instead of using PWD, Liu and
Fomel (2010) used offset continuation (OC) to construct updating and prediction
operators. The OC-seislet transform has better performance than the PWD-seislet
transform in characterizing and compressing structurally complex prestack reflection
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data. To reduce sensitivity to strong noise interference, Liu et al. (2015) proposed
a velocity-dependent (VD) seislet transform. In this method, the normal moveout
equation was introduced to serve as a connection between local slope and scanned
velocities. Chen and Fomel (2018) utilized empirical mode decomposition (EMD) to
obtain smoothly non-stationary data, and then applied the 1D non-stationary seislet
transform to the data. This new approach was called the EMD-seislet transform and
has shown excellent performance in attenuating random noise. Recently, several stud-
ies show the superiority of the seislet transform on sparse representation of seismic
data over the Fourier transform, the wavelet transform and the curvelet transform
(Fomel and Liu, 2010; Gan et al., 2015; Chen and Fomel, 2018).

With the ability to compress and reconstruct seismic images, the seislet trans-
form has been successfully applied in seismic data processing such as noise atten-
uation (Chen, 2016; Chen et al., 2016), deblending (Chen et al., 2014; Gan et al.,
2016) and data interpolation (Liu et al., 2013; Gan et al., 2016). However, the origi-
nal implementation of PWD-seislet transform requires recursively computation when
predicting distant traces, which increases its computation cost, especially when the
dataset is very large. Additionally, the smooth slopes from PWD in the original seislet
transform can fail to correctly follow reflections across discontinuities including faults
and unconformities. Therefore, geologically meaningful discontinuities may not be
optimally compressed.

The relative time (RT) volume, τ(x, y, t), has different meanings in different
domains. In seismic image domain, the RT is the same as the relative geologic
time (Stark, 2003, 2004) and each RT contour corresponds to a geologic horizon.
However, RT volumes of seismic gathers do not necessarily have geologic meaning,
since in this case, constant RT contours align with seismic events. There are several
ways to generate an RT volume. One can always pick out as many horizons or events
as possible to obtain it, which is simple but laborious. The RT volume can also be
generated by unwrapping seismic instantaneous phase (Stark, 2003; Wu and Zhong,
2012). Fomel (2010) used local slopes of seismic events estimated by PWD (Fomel,
2002) to generate the RT volume, which has superior computational performance.
The RT volume already has been successfully applied in missing well-log data predic-
tion (Bader et al., 2018) and seismic horizons construction (Wu and Hale, 2015).

In this paper, we propose a new implementation of the seislet transform, called RT-
seislet transform, by using the RT obtained from the predictive painting (Fomel, 2010)
to construct prediction operators for the seislet transform. In this way, prediction of
one trace from distant traces is computed directly and accurately, which saves a
lot of computation and has better performance with faults and unconformities. By
applying the new formulation of the seislet transform to synthetic and real data, we
demonstrate that the proposed method is efficient and able to preserve discontinuities,
while achieving excellent sparse representation of seismic data.

This paper is organized as follows: we first review the seislet transform and the
estimation of an RT volume. Then, we incorporate RT attribute to construct new
formulation of prediction and update operators for the seislet transform. Finally,
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we test the proposed RT-seislet transform on both synthetic and real datasets and
compare its performance with the PWD-seislet transform.

THEORY

Reviews of the 2D seislet transform

As proposed by Fomel and Liu (2010), the seislet transform can be constructed using
the lifting scheme (Sweldens, 1995). The procedure of the lifting scheme is as follows:

1. Arrange the input data as a sequence of records. In the seislet transform, the
input data are common shot gather or seismic image.

2. Divide the arranged records into even and odd components e and o. For the
2D seislet transform, each trace is a component and the seismic data are split
into two parts according to trace indices.

3. Find the residual r between the odd component and its prediction from the
even component

r = o−P[e], (1)

where P is a prediction operator.

4. Using the difference from the previous step to get a coarse approximation c of
the data by updating the even component

c = e+U[r], (2)

where U is an update operator.

5. The coarse approximation c obtained from last step becomes the new data, and
previous steps are applied to the new data at the next scale level.

The coarse approximation c from the final scale and residual difference r from all
scales form the result of the seislet transform.

The prediction and update operators are defined, for example, by modifying op-
erators in the construction of CDF 5/3 biorthogonal wavelets (Cohen et al., 1992) as
follows:

P[e]k =
(
S
(+)
k [ek−1] + S

(−)
k [ek]

)
/2 (3)

and
U[r]k =

(
S
(+)
k [rk−1] + S

(−)
k [rk]

)
/4, (4)

where S
(+)
k and S

(−)
k can accomplish the prediction of a trace from its left and right

neighbors, respectively. The predictions need to be applied at different scales. For
2D seislet transform, different scales mean different distances between traces. More
accurate higher-order formulations are possible. Following the inverse lifting scheme
from coarse scale to fine scale, the inverse seislet transform can be constructed.
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RT volume estimation

In the proposed method, the predictive painting (Fomel, 2010), based on the predic-
tion operator arising from PWD (Fomel, 2002), is utilized to generate the RT volume.
In the predictive painting, after local slopes are estimated, an RT volume is computed
by spreading time values of reference traces along dominant event slopes throughout
the whole seismic volume.

Using linear operator notation, PWD operation is defined as

d = Ds, (5)

where s = [s1 s2 · · · sN ]T is a collection of seismic traces and d denotes the residual
from destruction. D is the destruction operator defined as

D =


I 0 0 · · · 0

−P1,2 I 0 · · · 0
0 −P2,3 I · · · 0
...

. . . . . . . . .
...

0 · · · 0 −PN−1,N I

 , (6)

where I denotes the identity matrix and Pi,i+1 is an operator that predicts the (i+1)-
th trace from the i-th trace according to the local slope of seismic event or seismic
horizon.

By a simple recursion, a trace can be predicted utilizing a distant trace. For
example, Pr,k, predicting the k-th trace from the r-th trace, is defined as

Pr,k = Pk−1,kPk−2,k−1 · · ·Pr+1,r+2Pr,r+1. (7)

Then, the prediction of trace sr, given a reference trace sr is accomplished by

sprek = Pr,ksr. (8)

After determining the prediction operators in equation 6 by PWD, the predictive
painting algorithm recursively spreads information from a reference trace to the whole
seismic data volume by following local slopes using equation 8. If the information
spread by the predictive painting are the time coordinates, an RT volume is easily
computed.

Figure 1 shows a synthetic image with several complex geologic structures. Local
slopes corresponding to Figure 1 are shown in Figure 2, which are estimated by PWD.
Figure 3a is the RT volume calculated by the predictive painting using local slopes
in Figure 2. The reference trace of this RT volume is in the center of the image,
which is marked as a vertical line in Figure 3a. This single reference RT volume is
used to flatten the input seismic image (Figure 1) by unshifting each traces using
the information it contains, since RT indicates how much a given trace is shifted
with respect to the reference trace. The flattened image is shown in Figure 4a.
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Another RT volume with multiple references, shown in Figure 3b, is generated by
selecting five reference traces and calculating the average of all estimated RT volumes.
Figure 4b shows the corresponding flattened image. The comparison between two
flattened seismic images (Figure 4a and 4b) indicates that the RT volume with only
one reference trace does not necessarily have information about all seismic events
since there are discontinuities such as faults and unconformities, while the RT volume
computed with more reference traces contains more information.

Figure 1: Synthetic seismic image from Claerbout (2000).

RT formulation of prediction and update operators

RT contains the relationship between traces. From RT volume, it is straightforward
to obtain the shift of one trace with respect to the reference. Therefore, the trace
prediction using RT volumes is formulated as follows:

sprek (t) = sr(τk,r(t)) (9)

where sk and sr denote the k-th and the r-th trace, respectively. τk,r(t) is the RT
value of the k-th trace with the r-th trace as the reference trace, indicating the shift of
the k-th trace with respect to the r-th trace. According to equation 9, the prediction
of the k-th trace from the r-th trace is easily accomplished by simply applying for-
ward interpolation to the r-th trace using corresponding RT values. In the proposed
method, we use equation 9 to define operators S in equations 3 and 4 to construct cor-
responding prediction and update operators. In this way, a trace is predicted from a
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from rsf.proj import *
import os

# Size of the model
n1=200
n2=256

# Plot trace
def ref(trace, extra=''):
    out = 'ref%d' % trace
    Flow(out+'.asc',None,
         '''
         echo %d 0 %d 1 n1=4 in=$TARGET data_format=ascii_float
         ''' % (trace,trace))
    Plot(out,out+'.asc',
         '''
         dd form=native type=complex | 
         graph min1=0 max1=256 min2=0 max2=1 wanttitle=n wantaxis=n scalebar=y %s
         '''% extra)
    return out

# Generate and display the model
Flow('sigmoid',None,
        '''
        sigmoid n1=%d n2=%d d2=.008 |
        smooth rect1=3 diff1=1 adj=1| smooth rect1=3 |
        put label2=Distance
        ''' % (n1,n2) )
Result('sigmoid', 'grey title=')


# Prepare for predictive painting (estimate dips)
Flow('pad','sigmoid','math output=1 | pad beg1=50 end1=50')
Flow('sigmoid-pad','sigmoid','pad beg1=50 end1=50 | bandpass fhi=60')

Flow('dip-pad','sigmoid-pad pad',
     '''
     dip order=2 p0=0 verb=y niter=10 rect1=3 rect2=3
     mask=${SOURCES[1]}
     ''')
Flow('seed','dip-pad','window n2=1 | math output=x1')
Result('dip-pad',
       '''
       window n1=200 min1=0 |
       grey color=j title="" barlabel="Slope" scalebar=y
       ''')

# RT with one reference trace
Flow('pick-1','dip-pad seed',
     'pwpaint order=2 seed=${SOURCES[1]} i0=128 eps=0.1')
Plot('pick-1',
     '''
     window n1=200 min1=0 |
     grey color=j allpos=y title="Single reference" scalebar=y barlabel="RT"
     ''')
Result('pick-1',['pick-1',ref(128,'scalebar=y')],'Overlay')

# RT with multiple reference traces
refs =[]
picks=[]
for i0 in (1,64,128,192,255):
    pick = 'pick%d' % i0
    picks.append(pick)
    refs.append(ref(i0,'scalebar=y'))
    
    # RT with single reference trace
    Flow(pick,'dip-pad seed',
         'pwpaint order=2 seed=${SOURCES[1]} i0=%d eps=1' % i0)

np = len(picks)
Flow('pick-5',picks,
     'add ${SOURCES[1:%d]} | scale dscale=%g' % (np,1.0/np))
Plot('pick-5',
     '''
     window n1=200 min1=0 |
     grey color=j allpos=y title="Multiple reference" scalebar=y barlabel="RT"
     ''')
Result('pick-5',['pick-5']+refs,'Overlay')

# Flatten
Flow('flat-1','sigmoid-pad pick-1','iwarp warp=${SOURCES[1]} eps=1 n1=200 o1=0')
Flow('flat-5','sigmoid-pad pick-5','iwarp warp=${SOURCES[1]} eps=1 n1=200 o1=0')
Result('flat-1','grey wanttitle=n')
Result('flat-5','grey wanttitle=n')


# Change the reference trace
Flow('pick-150','dip-pad seed',
     'pwpaint order=2 seed=${SOURCES[1]} i0=150 eps=0.1')
Plot('pick-150',
     '''
     window n1=200 min1=0 |
     grey color=j allpos=y title="Relative Time" scalebar=y barlabel="RT"
     ''')
Result('pick-150',['pick-150',ref(150)],'Overlay')

Flow('time','sigmoid-pad','math output=x1')
Result('time','grey color=j allpos=y')

# Time warping
Flow('invint','time pick-150','iwarp warp=${SOURCES[1]}')
Result('invint','grey color=j allpos=y title="Time Warping" scalebar=y barlabel=RT')

Flow('invint-50','invint','window n2=1 f2=50 | spray axis=2 n=256')
Result('invint-50','window n1=200 min1=0 | grey color=j allpos=y scalebar=y barlabel="RT"')

Flow('pick-50','invint-50 pick-150','iwarp warp=${SOURCES[1]} inv=n')
Plot('pick-50',
     '''
     window n1=200 min1=0 |put o2=0 |
     grey color=j allpos=y title="Relative Time" scalebar=y barlabel="RT"
     ''')
Result('pick-50',['pick-50',ref(50)],'Overlay')

Flow('pick-50-true','dip-pad seed',
     'pwpaint order=2 seed=${SOURCES[1]} i0=50 eps=0.1')
Plot('pick-50-true',
     '''
     window n1=200 min1=0 |
     grey color=j allpos=y title="Relative Time" scalebar=y barlabel="RT" 
     ''')
Result('pick-50-true',['pick-50-true',ref(50)],'Overlay')

Result('diff','pick-50-true pick-50',
    '''
    add ${SOURCES[1]} scale=1,-1 | 
    window n1=200 min1=0 |
    grey color=j title="Diff" scalebar=y
    ''')
Flow('flat1','sigmoid-pad pick-50','iwarp warp=${SOURCES[1]} eps=1 n1=200 o1=0')
Flow('flat2','sigmoid-pad pick-50-true','iwarp warp=${SOURCES[1]} eps=1 n1=200 o1=0')
Flow('flat3','sigmoid-pad pick-150','iwarp warp=${SOURCES[1]} eps=1 n1=200 o1=0')
Result('flat-diff','flat1 flat2',
    '''
    add ${SOURCES[1]} scale=1,-1 | 
    grey title="Difference" maxval=0.00338088
    ''')
Result('flat1','grey title=""')
Result('flat2','grey title=""')
Result('flat3','grey title=""')

End()
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Figure 2: Local slopes estimated from Figure 1.

distant trace directly by the RT attribute instead of the recursive computation used in
the PWD-seislet transform. Also, because an accurate RT volume stores information
about all horizons and structural discontinuities including faults and unconformities,
predictions of traces around discontinuities using equation 9 are accurate. Therefore,
a better delineation of faults and unconformities can be achieved.

In computing an RT volume, we need to first choose one or multiple reference
traces. After computing the RT volume, the RT attribute between any two traces is
easily obtained from one RT volume using:

τk,r(t) = τ−1
r,l (τk,l(t)), (10)

where τj,i(t) represents the RT value of the j-th trace with the i-th trace as the
reference trace, and τ−1

r,l (t) is the time warping (Burnett and Fomel, 2009) of τr,l(t).
According to equation 10, given the shift information τr,l(t) and τk,l(t), the shift
relationship between the k-th trace and the r-th trace can be obtained by applying an
inverse interpolation to τr,l(t) using τk,l(t). Then, equation 9 is applied to implement
the prediction of the k-th trace from the r-th trace. Therefore, only one RT volume
is needed for the proposed implementation of the seislet transform.

Figure 5 shows an example of implementing equation 10 to compute an RT volume
from another one with different reference traces. The RT volume in Figure 5a is
obtained by the predictive painting with the 150th trace as the reference trace. This
RT volume can be represented by τk,150(t), k = 1, 2, . . . , n. Figure 5b is the time
warping of this RT volume. We extract the 50th trace from Figure 5b, which is
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(a)

(b)

Figure 3: RT estimated by predictive painting from Figure 1 using (a) a single refer-

ence trace and (b) multiple reference traces.
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(a)

(b)

Figure 4: Flattened images using RT volumes from (a) Figure 3a and (b) Figure 3b.
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denoted by τ−1
50,150(t). Then, by implementing equation 10, i.e., inverse interpolating

τ−1
50,150(t) using the whole RT volume (τk,150(t), k = 1, 2, . . . , n), we can get a new
RT volume, as shown in Figure 5c (τk,50(t), k = 1, 2, . . . , n). Here, we use the 50th
trace as the reference trace. To evaluate the effectiveness of equation 10, RT volumes
from Figure 5c and 5d are used to flatten Figure 1. Flattened images are shown
in Figure 6. Small differences between Figure 6a and 6b indicate that these two
RT volumes (Figure 5c and 5d) contain similar information, which demonstrate that
equation 10 can be used to get the relationship between any two traces from one
single RT volume.

(a) (b)

(c) (d)

Figure 5: (a) The RT volume obtained by the predictive painting and the reference
trace is the 150th trace. (b) Time warping of (a). (c) RT volume obtained by
equation 10. (d) The RT volume obtained by the predictive painting and the reference

trace is the 50th trace.

Workflow

The workflow of the proposed method is shown in Figure 7. As we can see, the pro-
posed approach is convenient to implement since only one RT volume is needed before
applying the new formulation of the seislet transform. In the proposed approach, we
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(a)

(b)

Figure 6: Flattened images using RT volumes from (a) Figure 5c and (b) Figure 5d.
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need first use PWD to compute the local slopes of the input seismic data such that the
RT volume can be computed by the predictive painting from the estimated slopes,
as discussed in the previous section. With the help of the generated RT volume,
the RT-seislet transform is then applied to the input data to get coefficients in the
RT-seislet transform domain. With the transformed data, signal processing tasks,
including data reconstruction and noise attenuation, can be easily applied.

Input seismic data

Plane-wave destruction

Local slopes

RT-seislet Transform

Predictive Painting

Relative Time

Output data in the 
RT-seislet transform domain

Figure 7: Workflow of the proposed RT-seislet transform.

SYNTHETIC DATA EXAMPLE

We use the same data example from Figure 1 to demonstrate the performance of the
proposed method in efficient data reconstruction. Figure 8 shows the RT calculated
from the image using the predictive painting with multiple reference traces. We
applied both the original PWD-seislet transform and the RT-seislet transform to this
image. Then, we threshold coefficients and keep only the largest ones from both the
transforms to reconstruct the same original data. By using the same percent (1%) of
large coefficients, the reconstruction from the new formulation (Figure 9b) recovers
more accurate amplitude values and better preserves structural discontinuities near
faults and unconformities than the one from PWD-seislet transform (Figure 9a).

The comparison between coefficients from the PWD-seislet transform and the
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Figure 8: RT volume estimated by the predictive painting using multiple reference
traces.

RT-seislet transform is shown in Figure 10. The minor difference of their decay rate
indicates that the PWD-seislet transform and the proposed transform obtain the same
sparsity for the input data. Figure 11 shows the plot of CPU time against the number
of traces. The proposed formulation of the seislet transform shows promising compu-
tation efficiency since the prediction of a trace using distant traces is accomplished
directly instead of recursively as in the original PWD-seislet transform.

For the purpose of testing the sensitivity of the RT-seislet transform to noise, we
add random noise to the synthetic model and utilize signal-to-noise ratio (SNR) as
measurement:

SNR = 10 log10
∥strue∥22

∥strue − s∥22
, (11)

where strue is the original data, and s denotes the reconstructed data (e.g., Figure 9b)
or noisy data. We plot SNRs of reconstructed data using the inverse PWD-seislet
transform and the inverse RT-seislet transform with respect to the noise variance
in Figure 12. Apparently, as the noise level increases, the performance of the RT-
seislet gets worse, which shows that the proposed method is sensitive to noise. But,
compared with the original PWD-seislet transform, the new method has superior
performance that is less sensitive to noise. Figure 13 shows one example of the noisy
data and the reconstructed data. The SNR of Figure 13b is 17.19 dB.

Figure 14 presents another synthetic example. Figure 14a and 14b shows the
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from rsf.proj import *
import os

# Size of the model
n1=200
n2=256

# Plot trace
def ref(trace):
    out = 'ref%d' % trace
    Flow(out+'.asc',None,
         '''
         echo %d 0 %d 1 n1=4 in=$TARGET data_format=ascii_float
         ''' % (trace,trace))
    Plot(out,out+'.asc',
         '''
         dd form=native type=complex | 
         graph min1=0 max1=256 min2=0 max2=1 wanttitle=n wantaxis=n
         ''')
    return out

# Generate and display the model
Flow('sigmoid',None,
        '''
        sigmoid n1=%d n2=%d d2=.008 |
        smooth rect1=3 diff1=1 adj=1| smooth rect1=3 |
        put label2=Distance
        ''' % (n1,n2) )
Result('sigmoid', 'grey title=')


# Prepare for predictive painting (estimate dips)
Flow('pad','sigmoid','math output=1 | pad beg1=50 end1=50')
Flow('sigmoid-pad','sigmoid','pad beg1=50 end1=50 | bandpass fhi=60')

Flow('dip-pad','sigmoid-pad pad',
     '''
     dip order=2 p0=0 verb=y niter=10 rect1=3 rect2=3
     mask=${SOURCES[1]}
     ''')
Flow('seed','dip-pad','window n2=1 | math output=x1')
Result('dip-pad',
       '''
       window n1=200 min1=0 |
       grey color=j title="Slope"
       ''')

# RT with multiple reference traces
picks=[]
for i0 in (5,10,80,128,156,175,250,251,255):
    pick = 'pick%d' % i0
    picks.append(pick)
    
    # RT with single reference trace
    Flow(pick,'dip-pad seed',
         'pwpaint order=2 seed=${SOURCES[1]} i0=%d eps=1' % i0)

np = len(picks)
Flow('rt',picks,
     'add ${SOURCES[1:%d]} | scale dscale=%g' % (np,1.0/np))
Plot('rt-grey','rt',
     '''
     window n1=200 min1=0 |
     grey color=j allpos=y
     Xscalebar=y Xbarreverse=y
     title="Relative Geological Time" clip=0.8
     minval=0 maxval=0.8 scalebar=y barlabel=RT
     ''')
Plot('rt-contour','rt',
     '''
     window n1=200 min1=0 |
     clip clip=0.8 |
     contour c0=0 dc=0.04 nc=20
     transp=y yreverse=y plotcol=7 plotfat=5
     Xscalebar=y Xbarreverse=y barlabel=" " 
     wanttitle=n wantaxis=n
     minval=0 maxval=0.8 scalebar=y
     ''')
Result('rt', 'rt-grey rt-contour', 'Overlay')


# RT-seislet transform
Flow('rtseis', 'sigmoid-pad rt',
     'rtseislet rt=${SOURCES[1]} eps=0.1 adj=y inv=y unit=y type=b')
Result('rtseis',
       '''
       put o2=0 d2=1 |
       window n1=200 min1=0 |
       grey  title="RT-seislet Transform" label2=Scale unit2= 
       ''')

# Inverse RT-seislet transform
Flow('rtseisinv', 'rtseis rt',
     'rtseislet rt=${SOURCES[1]} eps=0.1 inv=y unit=y type=b')
Result('rtseisinv', 
       '''
       window n1=200 min1=0 |
       grey  title="Inverse RT-seislet Transform" 
       ''')

# Inverse RT-seislet transform using 1% most significant coefficients
Flow('rtseisrec1','rtseis rt',
     '''
     threshold pclip=1 |
     rtseislet rt=${SOURCES[1]} eps=0.1 inv=y unit=y type=b 
     ''')
Result('rtseisrec1',
       '''
       window n1=200 min1=0 |
       grey title="Inverse RT-seislet Transform (1%)" 
       ''')

Flow('rtseiscoef','rtseis',
     '''
     window n1=200 min1=0 | 
     put n1=%d o1=1 d1=1 n2=1 unit1= unit2= | 
     sort
     ''' % (n1*n2))

# Estimate dips for PWD-seislet transform
Flow('dip','sigmoid','dip rect1=10 rect2=10 p0=0 pmin=-100')
Result('dip','grey color=j title=Slope scalebar=y')

# PWD-seislet transform
Flow('pwdseis','sigmoid dip',
     'seislet dip=${SOURCES[1]} eps=0.1 adj=y inv=y unit=y type=b')
Result('pwdseis',
       '''
       put o2=0 d2=1 |
       grey  title="PWD-seislet Transform" label2=Scale unit2=
       ''')

# Inverse PWD-seislet transform
Flow('pwdseisinv','pwdseis dip',
     'seislet dip=${SOURCES[1]} eps=0.1 inv=y unit=y type=b')
Result('pwdseisinv','grey  title="Inverse PWD-seislet Transform" ')

# Inverse PWD-seislet transform using 1% most significant coefficients
Flow('pwdseisrec1','pwdseis dip',
     '''
     threshold pclip=1 |
     seislet dip=${SOURCES[1]} eps=0.1 inv=y unit=y type=b
     ''')
Result('pwdseisrec1','grey  title="Inverse PWD-seislet Transform (1%)" ' )

Flow('pwdseiscoef', 'pwdseis',
     '''
     put n1=%d o1=1 d1=1 n2=1 unit1= unit2= | 
     sort
     ''' % (n1*n2))

Result('coef','rtseiscoef pwdseiscoef',
        '''
        cat axis=2 ${SOURCES[1]} |
        window n1=%d |
        scale axis=1 |
        math output="10*log(input)/log(10)" |
        graph dash=0,1 screenratio=1. labelsz=9 plotfat=5 
        label1="Number of coefficients" label2="a\_n\^" unit2="dB" wanttitle=n 
        ''' % (n1*n2/2))
End()
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(a)

(b)

Figure 9: Synthetic seismic image reconstruction by thresholding coefficients and
keeping only 1% of significant coefficients using (a) inverse PWD-seislet transform

and (b) inverse RT-seislet transform.
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Figure 10: Normalized coefficients from the PWD-seislet transform (red dashed line)
and the RT-seislet transform (blue solid line) sorted from large to small on a decibel

scale.
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Figure 11: CPU time of the PWD-seislet transform (red dashed line) and the RT-

seislet transform (blue solid line) versus the number of traces.
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from rsf.proj import *
from Tflow import Tflow
import os

# Size of the model
n1=200
n2=256

# Generate and display the model
Flow('sigmoid',None,
        '''
        sigmoid n1=%d n2=%d d2=.008 |
        smooth rect1=3 diff1=1 adj=1| smooth rect1=3 |
        put label2=Distance
        ''' % (n1,n2) )
Result('sigmoid', 'grey title=Input')


# Compare computation cost
tim = [[],[]]
samples = range(4,22)
for sample in samples: 
    nn2         = int(2**sample)
    sigmoid     = 'sigmoid%d' % sample
    pad         = 'pad%d' % sample
    sigmoidpad  = 'sigmoidpad%d' % sample
    dippad      = 'dippad%d' % sample
    seed        = 'seed%d' % sample
    rt          = 'rt%d' % sample
    rtseis      = 'rtseis%d' % sample
    dip         = 'dip%d' % sample
    pwdseis     = 'pwdseis%d' % sample
    siz         = 'siz%d' %sample

    # Generate models with different trace numbers
    Flow(sigmoid,None,
         '''
         sigmoid n1=%d n2=%d d2=.008 |
         smooth rect1=3 diff1=1 adj=1| smooth rect1=3 |
         put label2=Distance
         ''' % (n1,nn2) )

    # Prepare for RT-seislet transform
    Flow(pad,sigmoid,'math output=1 | pad beg1=50 end1=50')
    Flow(sigmoidpad,sigmoid,'pad beg1=50 end1=50 | bandpass fhi=60')
    Flow(dippad,[sigmoidpad,pad],
         '''
         dip order=2 p0=0 verb=y niter=10 rect1=3 rect2=3
         mask=${SOURCES[1]} 
         ''')
    Flow(seed,dippad,'window n2=1 | math output=x1')
    Flow(dippad,[sigmoidpad,pad],
         '''
         dip order=2 p0=0 verb=y niter=10 rect1=3 rect2=3
         mask=${SOURCES[1]}
         ''')
    Flow(rt,[dippad,seed],
         '''
         pwpaint order=2 seed=${SOURCES[1]} i0=%d eps=0.1 
         ''' % (nn2/2.0))

    # Number of traces
    Flow(siz,sigmoid,
         'math output=1 | stack axis=2 norm=n | window n1=1 f1=1')

    # Time of RT-seislet transform
    time = 'tim%d-rt' % sample
    Tflow(time,[sigmoidpad, rt, siz],
          'rtseislet rt=${SOURCES[1]} eps=0.1 adj=y inv=y unit=y type=b')
    tim[0].append(time)

    # Time of PWD-seislet transform
    time = 'tim%d-dip' % sample
    Flow(dip,sigmoidpad,'dip rect1=10 rect2=10 p0=0 pmin=-100')
    Tflow(time,[sigmoidpad, dip, siz],
          'seislet dip=${SOURCES[1]} eps=0.1 adj=y inv=y unit=y type=b')
    tim[1].append(time)

# Combine time files
Flow('tim1', tim[0], 'cat axis=1 ${SOURCES[1:%d]}' % len(samples))
Flow('tim2', tim[1], 'cat axis=1 ${SOURCES[1:%d]}' % len(samples))
Flow('tim','tim1 tim2','cat axis=2 ${SOURCES[1]}')

Result('tim',
       '''
       graph wanttitle=n dash=0,1 screenratio=1. labelsz=9 plotfat=9
       label2="CPU time" unit2=s label1="number of traces" unit1=
       ''')

End()
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Figure 12: SNR diagram of the PWD-seislet transform (red dashed line) and the
RT-seislet transform (blue solid line) with respect to the noise level (variance value).
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from rsf.proj import *

# Size of the model
n1=200
n2=256

# Generate and display the model
Flow('sigmoid',None,
        '''
        sigmoid n1=%d n2=%d d2=.008 |
        smooth rect1=3 diff1=1 adj=1 | smooth rect1=3 |
        put label2=Distance
        ''' % (n1,n2) )
Result('sigmoid', 'grey title=Input')


# Sensitivity to noise
noise_var = [0.05, 0.1, 0.2, 0.4, 0.8, 1]
snr_rt = []
snr_pwd = []
snr_noise = []

# Normalize the model
Flow('sigmoid-norm','sigmoid','scale axis=12 | scale dscale=6')

for i in range(len(noise_var)):
    var = noise_var[i]
    sigmoid     = 'sigmoid-noise%d' % i
    pad         = 'pad-noise%d' % i
    sigmoidpad  = 'sigmoidpad-noise%d' % i
    dip         = 'dip-noise%d' % i
    dippad      = 'dippad-noise%d' % i
    seed        = 'seed-noise%d' % i
    rt          = 'rt-noise%d' % i
    rtseis      = 'rtseis-noise%d' % i
    rtseisrec   = 'rtseisrec-noise%d' % i
    pwdseis     = 'pwdseis-noise%d' % i
    pwdseisrec  = 'pwdseisrec-noise%d' % i
    diffrt      = 'diff-rt-noise%d' % i
    snrrt       = 'snr-rt%d' % i
    diffpwd     = 'diff-pwd-noise%d' % i
    snrpwd      = 'snr-pwd%d' %  i
    n           = 'noise%d' % i
    snrnoise    = 'snr-noise%d' % i

    snr_rt.append(snrrt)
    snr_pwd.append(snrpwd)
    snr_noise.append(snrnoise)

    # Add noise
    Flow(sigmoid,'sigmoid-norm','noise seed=2019 var=%g' % var)
    Flow(n,[sigmoid,'sigmoid'],'add ${SOURCES[1]} scale=-1,1')
    Flow(snrnoise,None,"math n1=1  output='%g' " % var)

    # Prepare for RT-seislet transform
    Flow(pad,sigmoid,'math output=1 | pad beg1=50 end1=50')
    Flow(sigmoidpad,sigmoid,'pad beg1=50 end1=50 | bandpass fhi=60')
    Flow(dippad,[sigmoidpad,pad],
         '''
         dip order=2 p0=0 verb=y niter=10 rect1=3 rect2=3
         mask=${SOURCES[1]} 
         ''')
    Flow(seed,dippad,'window n2=1 | math output=x1')
    Flow(dippad,[sigmoidpad,pad],
         '''
         dip order=2 p0=0 verb=y niter=10 rect1=10 rect2=10
         mask=${SOURCES[1]}
         ''')
    # Compute RT
    picks=[]
    for i0 in (5,10,80,128,156,175,250,251,255):
        pick = 'pick-noise%d-%d' % (i,i0)
        picks.append(pick)
    
        # RT with single reference trace
        Flow(pick,[dippad,seed],
             'pwpaint order=2 seed=${SOURCES[1]} i0=%d eps=1' % i0)
    np = len(picks)
    Flow(rt,picks,
         'add ${SOURCES[1:%d]} | scale dscale=%g' % (np,1.0/np))

    # RT-seislet transform
    Flow(rtseis,[sigmoidpad,rt],
         'rtseislet rt=${SOURCES[1]} eps=0.1 adj=y inv=y unit=y type=b')
    Flow(rtseisrec,[rtseis,rt],
         '''
         threshold pclip=10 |
         rtseislet rt=${SOURCES[1]} eps=0.1 inv=y unit=y type=b | 
         window n1=200 min1=0
         ''')
    # Compute SNR
    Flow(diffrt,[rtseisrec,'sigmoid-norm'],'add ${SOURCES[1]} scale=-1,1')
    Flow(snrrt,[rtseisrec,diffrt],'snr2 noise=${SOURCES[1]}')

    # Estimate dips for PWD-seislet tranform
    Flow(dip,sigmoid,'dip rect1=10 rect2=10 p0=0 pmin=-100')

    # PWD-seislet transform
    Flow(pwdseis,[sigmoid,dip],
         'seislet dip=${SOURCES[1]} eps=0.1 adj=y inv=y unit=y type=b')
    Flow(pwdseisrec,[pwdseis,dip],
         '''
         threshold pclip=10 |
         seislet dip=${SOURCES[1]} eps=0.1 inv=y unit=y type=b
         ''')
    # Compute SNR
    Flow(diffpwd,[pwdseisrec,'sigmoid-norm'],'add ${SOURCES[1]} scale=-1,1')
    Flow(snrpwd,[pwdseisrec,diffpwd],'snr2 noise=${SOURCES[1]}')

Flow('snr-rt',snr_rt,'cat axis=1 ${SOURCES[1:%d]}' % len(snr_rt))
Flow('snr-pwd',snr_pwd,'cat axis=1 ${SOURCES[1:%d]}' % len(snr_pwd))
Flow('snr-noise',snr_noise,'cat axis=1 ${SOURCES[1:%d]}' % len(snr_noise))
Flow('snr-rt-noise','snr-noise snr-rt','cmplx ${SOURCES[1]}')
Flow('snr-pwd-noise','snr-noise snr-pwd','cmplx ${SOURCES[1]}')
Flow('snr','snr-rt-noise snr-pwd-noise','cat axis=2 ${SOURCES[1]}')

Result('snr',
       '''
       graph wanttitle=n dash=0,1 screenratio=1. labelsz=9 plotfat=9
       label2="S/N" unit2=dB label1="Noise variances" unit1=
       ''')

# Example with noise
Result('sigmoid-noise0','grey title="Data with noise"')
Result('rtseisrec-noise0','grey title="Reconstructed data"')

End()
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(a)

(b)

Figure 13: (a) Noisy data. (b) Reconstructed data using 10% coefficients

(SNR=17.19).
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synthetic shot gather with three hyperbolic events and Figure 14b is the data recon-
struction by the RT-seislet transform using only 1% of the most significant coefficients,
respectively. We use the first, the middle and the last traces as the reference traces
to compute the RT volume. The residual between the synthetic shot gather and the
reconstruction result is shown in Figure 14c. For this simple synthetic shot gather,
the proposed method achieves an excellent data reconstruction result.

(a) (b)

(c)

Figure 14: (a) Synthetic shot gather. (b) Data reconstruction by the inverse RT-
seislet transform using only 1% of the most significant coefficients. (c) Difference

between (a) and (b).

2D FIELD DATA EXAMPLE

To further test the proposed method, we use a common-midpoint gather from the
North Sea dataset (Figure 15). Figure 16a shows the data in the seislet transform
domain. We observe that significant coefficients are apparent in only a narrow area
on the left, which indicates the excellent compression ability of the proposed RT
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from rsf.proj import *
from math import *

wf = 2*pi
nt = 501
dt = 0.004
ot = 0
nx = 512
dx = 0.01
ox = 0
nw = 200
dw = 0.0005
ow = 0

# Generate synthetic data
for eve in (2,3,4):
    spike='spike%d' % eve
    tpara='tpara%d'   % eve
    para='para%d'     % eve
    Flow(spike,None,
        '''
        spike n1=%d d1=%g o1=%g n2=%d d2=%g o2=%g nsp=1 k1=%d mag=1  p2=0|
        ricker1 frequency=15 | put unit2=km label2=Distance
        ''' % (nt,dt,ot,nx,dx,ox,eve*80-30))
    Flow(tpara,spike,
        '''
        window n1=1 | math output="-sqrt(%g*%g+(x1-2.5)*(x1-2.5)/%g/%g)+%g"
        ''' % (0.01*(eve*80-30),0.01*(eve*80-30),2,2,0.01*(eve*80-30)))
    Flow(para,[spike, tpara],
        'datstretch datum=${SOURCES[1]} ')
Flow('para','para2 para3 para4','add ${SOURCES[1]} ${SOURCES[2]}')
Result('para','para',
       '''
       grey label2=Distance unit2=km transp=y yreverse=y title="Signal" clip=0.14
       ''')

# Prepare for predictive painting (estimate dips)
Flow('pad','para','math output=1 | pad beg1=50 end1=50')
Flow('para-pad','para','pad beg1=50 end1=50')

Flow('dip-pad','para-pad pad',
     '''
     dip order=2 p0=0 verb=y niter=10 rect1=10 rect2=10
     mask=${SOURCES[1]}
     ''')
Flow('seed','dip-pad','window n2=1 | math output=x1')
Result('dip-pad',
       '''
       window n1=501 min1=0 |
       grey color=j title="Slope"
       ''')
Flow('trace','dip-pad','window n2=1 | math output=x1')

# RT with multiple reference traces
picks=[]
for i0 in (0,255,511):
    pick = 'pick%d' % i0
    picks.append(pick)
    
    # RT with single reference trace
    Flow(pick,'dip-pad trace',
         'pwpaint order=2 seed=${SOURCES[1]} i0=%d eps=1' % i0)

np = len(picks)
Flow('rt',picks,
     'add ${SOURCES[1:%d]} | scale dscale=%g' % (np,1.0/np))
Result('rt','grey color=j')

# Seislet transform
Flow('rtseis', 'para-pad rt',
     'rtseislet rt=${SOURCES[1]} eps=1 adj=y inv=y unit=y')
Result('rtseis',
       '''
       grey label2=Distance unit2=km transp=y yreverse=y 
       title="RT-seislet Transform"
       ''')

# Reconstruction
Flow('para-rtseisrec1','rtseis rt',
     '''
     threshold pclip=1 |
     rtseislet rt=${SOURCES[1]} eps=1 inv=y unit=y |
     window n1=501 min1=0
     ''')
Result('para-rtseisrec1',
       '''
       grey label2=Distance unit2=km transp=y yreverse=y 
       title="Inverse RT-seislet Transform (1%)" 
       clip=0.14
       ''')

Flow('para-diff','para para-rtseisrec1','add ${SOURCES[1]} scale=1,-1')
Result('para-diff',
       '''
       grey label2=Distance unit2=km transp=y yreverse=y 
       title=Difference
       clip=0.14
       ''')

End()
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formulation of the seislet transform. The field data reconstruction using only 1% of
the most significant RT-seislet coefficients is shown in Figure 16b. The reconstructed
image retains the most important seismic events in the original seismic data.

Figure 15: Common-midpoint gather.

If we mute the RT-seislet coefficients at fine scales while keeping the significant
coefficients at coarse scales (Figure 17b), the inverse RT-seislet transform enables
effective denoising, removing incoherent noise from the gather. The result of denoising
are shown in Figure 17c. Figure 17d shows the removed noise section using the
proposed implementation of the seislet transform.

The RT-seislet is also able to perform interpolation. We add two more scales
with small random noise to Figure 16a and interpolate the RT volume by a factor
of four. Then the interpolated shot gather is obtained and the number of traces is
increased by four. The extended data in the seislet transform domain is shown in
Figure 18a. Figure 18b is the interpolated shot gather. Figure 19 shows the F-K
spectrum of the zero-padded field data and the interpolated gather. The zero-padded
shot gather is generated by manually padding zero traces between two traces. In this
example, the seislet transform domain is extended with random noise because there
is unpredictable noise in the real case.
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from rsf.proj import *
from rsf.recipes.beg import server as private

import random, math

random.seed(2018)

# Data size
n2=128

# Fetch data
Fetch('elfgath.rsf','elf',private)

# Display data
Flow('gath','elfgath',
     'dd form=native | put unit1=s unit2=m label2=Offset d2=25 o2=100')
Result('gath0','gath','grey title=')
Result('gath1','gath','grey title=')

# Prepare for predictive painting
Flow('mask','gath','math output=1 | pad n1=1000')
Flow('gath-pad','gath','pad n1=1000')

Flow('dip','gath-pad mask',
     'dip rect1=10 rect2=10 p0=0 pmin=0 mask=${SOURCES[1]} order=2')
Flow('trace','dip','window n2=1 | math output=x1')
Result('dip',
       '''
       window n1=800 |
       grey  color=j title="Slope" 
       ''')

# RT with single reference trace
Flow('rt','dip trace','pwpaint seed=${SOURCES[1]} eps=0.05 order=2')


# RT-seislet transform
Flow('seis', 'gath-pad rt',
     'rtseislet rt=${SOURCES[1]} eps=0.1 adj=y inv=y unit=y')
Result('seis',
       '''
       put o2=0 d2=1 |
       window n1=800 |
       grey  title="RT-seislet Transform" label2=Scale unit2= 
       ''')


# Inverse RT-seislet transform
Flow('seisinv', 'seis rt',
     'rtseislet rt=${SOURCES[1]} eps=0.1 inv=y unit=y')
Result('seisinv', 
       '''
       window n1=800 |
       grey  title="Inverse seislet Transform" 
       ''')

# Inverse RT-seislet transform using 1% significant coefficients
Flow('seisrec1','seis rt',
     '''
     threshold pclip=1 |
     rtseislet rt=${SOURCES[1]}
     eps=0.1 inv=y unit=y 
     ''')
Result('seisrec1',
       '''
       mutter v0=2600 |
       window n1=800 |
       grey  title="Inverse RT-seislet Transform (1%)" 
       ''')


# Denoise using different scales
max=int(math.log(n2)/math.log(2))
for m in range(max):
    scale = int(math.pow(2,m))
    seis  = 'seis%d' % scale
    Flow(seis,'seis rt',
         '''
         cut f2=%d | 
         rtseislet rt=${SOURCES[1]} eps=0.1 inv=y unit=y
         ''' % scale)

Result('seis16',
       '''
       mutter v0=2600 |
       window n1=800 |
       grey unit1=s unit2=m  title="Denoising result" 
       ''')

# Denoise
seis = 'seis%d' % 16 
rt   = 'rt'
Result('seisdeno',[seis,rt],
       '''
       rtseislet rt=${SOURCES[1]} eps=0.1 adj=y inv=y unit=y |
       put o2=0 d2=1 |
       window n1=800 |
       grey unit1=s title="RT-seislet Transform" label2=Scale unit2=
       ''')

# Noise section
Flow('diff',[seis,'gath'],
     '''
     mutter v0=2600 |
     window n1=800 |
     add scale=1,-1 ${SOURCES[1]} 
     ''')
Result('diff','grey unit1=s title="Noise" label2=Scale unit2=')

# Interpolation
# Resample by 2
Flow('rand','seis',
     '''
     window n1=800 | 
     noise rep=y var=20000 seed=2006 | 
     mutter v0=2600 | pad n1=1000
     ''')

Flow('seisrand','seis rand','cat axis=2 ${SOURCES[1]} | put d2=12.5')

Flow('rt2','rt',
     'transp | remap1 d1=12.5 o1=100 n1=256 | transp')

Flow('gath2','seisrand rt2',
     'rtseislet rt=${SOURCES[1]} eps=0.1 inv=y unit=y')

# Resample by 4
Flow('rand2','seisrand',
     '''
     window n1=800 | 
     noise rep=y var=20000 seed=2006 | 
     mutter v0=2600 | pad n1=1000
     ''')

Flow('seisrand2','seisrand rand2','cat axis=2 ${SOURCES[1]} | put d2=6.25')
Result('seisrand2',
    '''
    put o2=0 d2=1 | 
    window n1=800 | 
    grey unit1=s title="Seislet Transform" label2=Scale unit2=
    ''')

Flow('rt4','rt2',
     'transp | remap1 d1=6.25 o1=100 n1=512 | transp')

Flow('gath4','seisrand2 rt4',
     'rtseislet rt=${SOURCES[1]} eps=0.01 inv=y unit=y')
Result('gath4',
       '''
       mutter v0=2600 |
       window n1=800 |
       grey unit1=s unit2=m title="Interpolated shot gather"
       ''')

# FFT
Flow('fft','gath','addtrace ratio=4 | fft1 | fft3')
Result('fft',
    '''
    math output="abs(input)" | real | 
    grey wanttitle=
    ''')
Flow('fft2','gath4','window n1=800 | fft1 | fft3')
Result('fft2',
    '''
    math output="abs(input)" | real |
    grey wanttitle=
    ''')

End()
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(a)

(b)

Figure 16: (a) The field data in the RT-seislet transform domain and (b) recon-
struction using only 1% of significant coefficients by the inverse RT-seislet transform.
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(a) (b)

(c) (d)

Figure 17: (a) Original gather. (b) Denoised result by muting RT-seislet coefficients
at fine scales (a) and (c) the removed noise section using the RT-seislet transform.
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(a)

(b)

Figure 18: (a) Extended seislet transform domain. (b) Interpolated shot gather by

the inverse RT-seislet transform.

TCCS



Geng et al. 23 RT-seislet transform

(a)

(b)

Figure 19: F-K spectra of (a) zero-padded and (b) the interpolated field data.
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3D FIELD DATA EXAMPLE

We also test the proposed method on a 3D dataset. Figure 20a is the Teapot Dome
seismic dataset. After inline and crossline slopes (Figure 21) are estimated, the RT
volume (Figure 20b) is easily obtained from the predictive painting with multiple
reference traces. With the RT volume, the 3D seislet transform can be constructed
by cascading the 2D seislet transform along inline and crossline directions. To be
specific, we first apply the 2D RT-seislet transform along inline direction, and then
another 2D transform along crossline is applied on the coefficients from the previous
step to obtain the coefficients in the 3D transform domain. The coefficients of the
2D seislet transform along inline direction and the 3D seislet transform are shown
in Figure 22a and 22b. In the seislet domain, most of the coefficients concentrate
in the coarse scales, which shows the excellent compression ability of the RT-seislet
transform. Figure 22c is the data reconstruction result using only 5% of the most
significant coefficients. The difference between Figure 20a and the reconstructed
data, contains mainly noise, is shown in Figure 22d. The proposed method has good
performance for reconstruction and preserving the structures of the dataset.

DISCUSSION

The proposed formulation of the seislet transform attempts to construct multiscale
prediction operators, to enhance the performance of the seislet transform. The predic-
tion operators in the original seislet transform are defined by PWD, so the prediction
of distant traces needs recursive computation, which is very time-consuming when it
comes to large size dataset. In the proposed RT-seislet transform, an RT volume is
used to define a multiscale prediction operator. As shown in the previous sections,
the relationship between any two traces can be obtained from the RT volume, which
helps avoid the recursive computation for the prediction of distant traces. As a result,
the RT-seislet transform is much more efficient than the original seislet transform.

Besides, in the implementation of the proposed method, the choice of reference
traces plays an important role in the generation of the RT volume. More reference
traces usually mean a better RT volume. The location of reference traces also needs
to be considered carefully. In practice, evenly distributed reference traces are rec-
ommended. Besides, complex geologic structures need to be treated differently. For
example, it is better to put reference traces at each side of faults. Another important
issue is about the smoothing radius when estimating local slopes by PWD. For noise-
free data, small smoothing radius is enough. The smoothing radius is three for the
estimation of Figure 2. And with the increasing of the noise level, larger smoothing
radius is needed.

The proposed RT-seislet transform highly depends on the RT volume. In our
method, local slopes by PWD, which are easily affected by noise, are utilized to
generate the RT volume, so the new formulation is sensitive to the noise. However,
this problem certainly can be solved by improving the PWD or using other methods,
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(a)

(b)

Figure 20: (a) Teapot dome dataset. (b) RT volume estimated by the predictive

painting.
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from rsf.proj import *
from rsf.recipes.beg import server
import math

# Fetch and read the data
Fetch('filt_mig.sgy','teapot',server)
Flow('mig tmig mig.asc mig.bin', 'filt_mig.sgy',
     '''
     segyread tfile=${TARGETS[1]} hfile=${TARGETS[2]}
     bfile=${TARGETS[3]}
     ''')

# Convert from 2D to 3D
Flow('cube mask','mig','intbin xk=ep yk=tracf mask=${TARGETS[1]}')

Flow('cubew','cube','window n1=751')
Flow('slice','cubew','window n1=1 f1=420')

# Compute crossline and inline
az = 70*math.pi/180
Flow('x', 'slice',
     'math output="%g+(%g)*x1+(%g)*x2" ' % (345.0/2,math.cos(az),math.sin(az)))
Flow('y', 'slice',
     'math output="%g+(%g)*x1+(%g)*x2" ' % (188.0/2,-math.sin(az),math.cos(az)))
Flow('xy','x y','cat axis=3 ${SOURCES[1]} | put n1=64860 n2=1 | window | transp')


# Window a cube according the crossline and inline we get
Flow('cuber','cubew xy',
     '''
     window min1=0.45 n1=512 | put n2=64860 n3=1 | transp memsize=1000 |
     bin xkey=0 ykey=1 head=${SOURCES[1]}
     ny=256 nx=64 x0=310 dx=1 y0=-150 dy=1 interp=2 |
     transp plane=13 memsize=1000 | put o2=1 o3=1 
     label2="Inline number" label3="Crossline number" unit2= unit3=
     ''')

# Define the plot function for cube
def cubeplot(frame=[420,199,99],title='',clip='',extra=''):
    return '''
    byte gainpanel=all bar=bar.rsf %s |
    grey3 frame1=%d frame2=%d frame3=%d flat=y
    label1=Time unit1=s label2="Inline number" label3="Crossline number"
    title="%s" %s point1=0.7 point2=0.7 flat=n 
    ''' % (clip,frame[0],frame[1],frame[2],title,extra)

# Display the cube
Result('cuber',cubeplot([195,140,36]))
Result('cube',cubeplot([195,140,36]))


# Estimate dips
Flow('patch','cuber',
     'pad beg1=25 end1=25 | patch p=1,4,1')
Flow('maskdip','cuber',
     '''
     math output=1 | pad beg1=25 end1=25 |
     patch p=1,4,1
     ''')

Flow('dip','patch maskdip',
     'dip rect1=5 rect2=5 rect3=5 order=3 mask=${SOURCES[1]}',
     split=[5,4,[0,1]])

# Inline dip
Flow('dip1','dip','window n4=1 squeeze=n | patch inv=y weight=y dim=3')
# Crossline dip
Flow('dip2','dip','window f4=1 squeeze=n | patch inv=y weight=y dim=3')

# Display dips
Result('dip1',
       'window n1=512 f1=25 |' + 
       cubeplot([195,140,36],'Inline Dip','','color=j scalebar=y barlabel="Slope"'))
Result('dip2',
       'window n1=512 f1=25 |' + 
       cubeplot([195,140,36],'Crossline Dip','','color=j scalebar=y barlabel="Slope"'))

Flow('dips','dip1 dip2','cat axis=4 ${SOURCES[1]}')
Flow('seed','dips','window n2=1 n3=1 n4=1 | math output=x1')

# Compute cost time
Flow('shift1','cuber','window f2=1')
Flow('shift2','cuber','window f3=1')
Flow('last1','cuber','window f2=255 squeeze=n')
Flow('last2','cuber','window f3=63 squeeze=n')
Flow('ref1','shift1 last1','cat axis=2 ${SOURCES[1]}')
Flow('ref2','shift2 last2','cat axis=3 ${SOURCES[1]}')
Flow('ref1s','ref1','add mode=p $SOURCE | stack axis=1 norm=n')
Flow('ref2s','ref2','add mode=p $SOURCE | stack axis=1 norm=n')
Flow('corr1', 'ref1 cuber',
     'add mode=p ${SOURCES[1]} | stack axis=1 norm=n | clip2 lower=1e-3')
Flow('corr2', 'ref2 cuber',
     'add mode=p ${SOURCES[1]} | stack axis=1 norm=n | clip2 lower=1e-3')
Flow('cuber2','cuber','add mode=p $SOURCE | stack axis=1 norm=n')
Flow('cos1','corr1 cuber2 ref1s',
     'math s1=${SOURCES[1]} s2=${SOURCES[2]} output="(s1*s2)/(input*input)"')
Flow('cos2','corr2 cuber2 ref2s',
     'math s1=${SOURCES[1]} s2=${SOURCES[2]} output="(s1*s2)/(input*input)"')

Flow('cos','cos1 cos2',
     '''
     cat axis=3 ${SOURCES[1]} |
     smooth rect1=40 rect2=40
     ''')

# Compute RT with different reference traces
picks = []
for z, y in [(2, 25), (3, 25), (5, 25), (15, 20), (40, 25), (60, 23), (70, 25),
             (75, 40), (80, 25), (80, 40), (85, 24), (100, 28), (130, 22),
             (135, 28), (140, 25), (140, 36), (190, 39), (200, 25), (230, 25),
             (235, 25), (235, 26), (235, 24), (240, 25), (245, 25), (250, 25),
             (250, 26), (251,25)]:
    time = 'time-%d-%d' % (z,y)
    pick = 'pick-%d-%d' % (z,y)
    Flow(time,'cos',
         '''
         mul $SOURCE | stack axis=3 norm=n |
         put o1=0 d1=1 o2=0 d2=1 o3=0 d3=1 |
         eikonal vel=n zshot=%d yshot=%d
         ''' % (z,y))
    Flow(pick,['dips','seed',time],
         'pwpaint2 seed=${SOURCES[1]} cost=${SOURCES[2]} order=3 eps=1')
    picks.append(pick)

# Compute RT
np = len(picks)
Flow('pick',picks,
     'add ${SOURCES[1:%d]} | scale dscale=%g' % (np,1.0/np))
Flow('pickt','pick','transp plane=23')
Result('pick',
       'window n1=512 f1=25 |' + 
        cubeplot([195,140,36],'Relative Time','allpos=y',
       'color=j allpos=y scalebar=y barlabel="RT"'))

# Faltten the data
Flow('cuberpad','cuber','pad beg1=25 end1=25')
Flow('flat','cuberpad pick','iwarp  warp=${SOURCES[1]} eps=1')
Result('flat',cubeplot([195,140,36]))


# RT-seislet transform
Flow('rtseis-inline','cuberpad pick pickt',
     '''
     rtseislet rt=${SOURCES[1]} eps=1 adj=y inv=y unit=y type=b
     ''')
Flow('rtseis','rtseis-inline pickt',
    '''
    transp plane=23 |
    rtseislet rt=${SOURCES[1]} eps=1 adj=y inv=y unit=y type=b |
    transp plane=23 
    ''')
Result('rtseis-inline','window n1=512 f1=25 |' + cubeplot([195,140,36]))
Result('rtseis','window n1=512 f1=25 |' + cubeplot([195,140,36]))

# Inverse RT-seislet transform using 1% most significant coefficients
Flow('teapot-rtseisrec5','rtseis pickt pick',
     '''
     threshold pclip=5 |
     transp plane=23 |
     rtseislet rt=${SOURCES[1]} eps=1 inv=y unit=y type=b |
     transp plane=23 |
     rtseislet rt=${SOURCES[2]} eps=1 inv=y unit=y type=b |
     window n1=512 f1=25 
     ''')
     
Result('teapot-rtseisrec5',cubeplot([195,140,36]))

Flow('teapot-diff','cuber teapot-rtseisrec5','add ${SOURCES[1]} scale=1,-1')
Result('teapot-diff',cubeplot([195,140,36]))

End()
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(a)

(b)

Figure 21: Inline (a) and Crossline (b) Dip.
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(a) (b)

(c) (d)

Figure 22: (a) The coefficients in 2D seislet domain along inline only. (b) The coeffi-
cients in 3D seislet domain. (c) Data reconstruction using only 5% of significant coeffi-
cients by the inverse RT-seislet transform. (d) Difference between (c) and the original

seismic volume (Figure 20a).
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which are not sensitive to noise, to generate the RT volume.

CONCLUSION

We have proposed a new formulation of the seislet transform, a novel approach to
sparse seismic data. In our approach, we use an RT volume to construct multiscale
prediction and update operators for the seislet transform. This proposed approach is
computationally more efficient and better preserves geologically meaningful discon-
tinuities than the original formulation of the seislet transform in reconstructing the
raw seismic data. It also has excellent performance in obtaining the sparse represen-
tation of seismic data. Synthetic and field data examples show that the proposed new
formulation is efficient and effective in data reconstruction and noise attenuation.
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