
Investigating the possibility of locating

microseismic sources using distributed sensor

networksa

aPublished in SEG Expanded Abstracts, 2485-2490, (2015)

Junzhe Sun, Tieyuan Zhu, Sergey Fomel, The University of Texas at Austin, and
Wen-Zhan Song, Georgia State University

ABSTRACT

Distributed sensor networks are designed to provide computation in-situ and
in real-time. The conventional time-reversal imaging approach for microseismic
event location may not be optimal for such an environment. To address this
challenge, we develop a methodology of locating multiple microseismic events
with unknown start times based on the cross-correlation imaging condition bor-
rowed from active-source seismic imaging. The imaging principle states that a
true microseismic source must correspond to the location where all the backward-
propagated events coincide in both space and time. Instead of simply stacking the
backward-propagated seismic wavefields, as suggested by time-reversal imaging,
we perform multiplication reduction to compute a high-resolution microseismic-
ity map. The map has an extra dimension of time, indicating the start times of
different events. Combined with a distributed sensor network, our method is de-
signed for monitoring microseismic activities and mapping fracture development
during hydraulic fracturing in-situ and in real-time. We use numerical examples
to test the ability of the proposed technique to produce high-resolution images
of microseismic locations.

INTRODUCTION

The development of unconventional reservoirs relies on hydraulic fracturing, a tech-
nique that stimulates fracture network and enhances permeability by injecting high-
pressure fluids into production formations (Montgomery and Smith, 2010). Microseis-
mic monitoring is currently the only technique that can provide real-time information
about the geometry of stimulated fracture network (Maxwell, 2014). The key task in
microseismic monitoring is locating microseismic events. The traditional method for
microseismic imaging is arrival-time inversion with traveltime picking adopted from
earthquake seismology (Gibowicz and Kijko, 2013). However, the microseismic data
often contain unidentifiable P or S-wave signals emerging from strong background
noise, e.g., surface microseismic data (Duncan and Eisner, 2010). This makes travel-
time picking challenging.

TCCS

Sun et al. 2 Source location imaging

Recently progress has been made in locating seismic sources with minimum or
without traveltime picking. Rentsch et al. (2006) and Rentsch et al. (2010) developed
a source location method inspired by Gaussian-beam migration, which has low sensi-
tivity to picking precision. Kao and Shan (2004) introduced a source-scanning algo-
rithm in which data are aligned and stacked based on the traveltime from speculative
image points in a manner similar to diffraction-stack (Kirchhoff) migration. Instead of
using traveltimes, Gajewski and Tessmer (2005) back propagated full-waveform data
by reverse-time modeling (McMechan, 1982). Artman et al. (2010) and Witten and
Artman (2011) generalized this approach using P- and S-waves. Zhu (2014) improved
the source properties by applying attenuation compensation. Time-reversal imaging
is capable of inferring both the location and the start time of a point source, however,
it may fail to locate rupture propagation (Kremers et al., 2011), i.e., multiple sources
clustered along the time axis. Detecting and discerning each hypocenter therefore
requires an evolving microseismic image that has high-resolution in both space and
time.

Distributed sensor networks are designed to perform computation in-situ and in
real-time. Recently, they have been used for seismic tomography based on the ad-
vanced wireless sensor network technology and distributed computing algorithms (Shi
et al., 2013; Song et al., 2015). Instead of collecting data to a central place for pro-
cessing, the distributed seismic data processing and computing can be performed on
a single sensor or locally on a few sensors. The results are then gathered for real-time
visualization. Employing distributed sensor networks for microseismic monitoring
requires a distributed microseismic location algorithm.

In this paper, we develop a distributed microseismic imaging algorithm that is
inspired by both passive-source time-reversal imaging and active-source migration
imaging. The key innovation is that the imaging principle requires that the im-
aged hypocenters must correspond to locations where all the wavefields individually
backward-propagated from each receiver coincide in both space and time. Our method
should be capable of producing high-resolution images of multiple source locations,
even when the signal-to-noise ratio (SNR) is low. The processing framework detailed
in this paper is naturally suited for distributed sensor networks.

We first introduce the cross-correlation imaging condition for locating microseis-
mic sources and establish a connection with time-reversal imaging. Synthetic exam-
ples are used to test the ability of the proposed approach to image multiple microseis-
mic locations at once. We discuss a possible application of the proposed framework
to real-time in-situ microseismic monitoring on distributed sensor networks.

THEORY

In prestack seismic reflection imaging, a reflector is imaged when the source wavefield
coincides with the receiver wavefield in both space and time (Claerbout, 1985). For
poststack or zero-offset data, reflectors can be imaged using the exploding reflector

TCCS

Sun et al. 3 Source location imaging

concept (Loewenthal et al., 1976). The imaging condition of exploding reflector is
similar to that of time-reversal imaging, which states that the backward-propagated
wavefield at zero time corresponds to the reflectors/sources. The principle of time-
reversal imaging can be used for locating passive earthquake hypocenters (Gajewski
and Tessmer, 2005). All the aforementioned imaging conditions require the start
times of seismic sources to be available, which is not the case for microseismic data.
Therefore, most existing time-reversal imaging algorithms need to perform scanning
and picking on a group of potential start times (Fink, 2006; Maxwell, 2014).

Motivated by the development of distributed sensor networks, we propose to adopt
the imaging principle of prestack migration for locating microseismic hypocenters. We
treat the wavefield back propagated from each individual receiver as an independent
wavefield, and define microseismic hypocenters as the locations where all the wave-
fields coincide in both space and time. The imaging condition is formulated as a
multiplication reduction of all the back propagated wavefields, calculated using data
from each receiver:

I(x, t) =
N−1∏
i=0

Ri(x, t) . (1)

A similar technique was developed by Nakata (2015, personal communication). As-
suming the velocity model is accurate and data contains zero noise, the image I(x, t)
should have non-zero values only if all the backward-propagated wavefields are non-
zero at location x and time t, i.e., the starting of an earthquake. When noise is
present in the data, extra non-zero values might appear in the image. However, as
long as the noise has certain randomness, the amplitude of these false image points
will be much weaker than those generated by coherent signal, and thresholding can
effectively separate the non-zero values result from noise. The image I(x, t) calcu-
lated by equation 1 therefore indicates the seismicity at time t. The resolution of the
image depends on the frequency content of the wavefields.

The conventional time-reversal imaging can be formulated in a similar fashion.
Instead of performing multiplication, the image is produced by summing over all the
receiver wavefields:

I(x, t) =
N−1∑
i=0

Ri(x, t) . (2)

In practice, this is done by backward-propagating all the data at once and the sum-
mation is implicit. When applied to microseismic data from multiple sources, it is
usually a challenging task to pick the hypocenters from the complicated wavefield,
especially when the data has a low SNR.

The cross-correlation imaging condition (equation 1) and time-reversal imaging
condition (equation 2) represent two extremes. The image produced by equation 1 is
high-resolution and easy to pick, since only non-zero values in the image correspond
to hypocenters. However, it requires propagating the wavefields using data from each
receiver separately, and thus is computationally intensive. Equation 2, on the other
hand, requires essentially only one computation using the entire data set, but has

TCCS

Sun et al. 4 Source location imaging

less resolving power and is less suitable for distributed networks. A hybrid imaging
condition would combine the merits of the two:

I(x, t) =
N/n−1∏
j=0

n−1∑
k=0

Rj×n+k(x, t) , (3)

where n is the local summation window length. Length n should be selected such that
neighboring receivers are backward-propagated together while far-apart receivers are
cross-correlated. Equation 3 requires N/n computations of reverse-time modeling. In
principle, both equation 1 and 3 need to perform cross-correlation using at least three
wavefields to constrain one point in space. Schematically, the differences between the
three imaging conditions is shown in Figure 1.

Cross-correlation imaging condition

Hybrid imaging condition

Time-reversal imaging condition

Figure 1: Different imaging conditions for locating microseismic sources. A homoge-
neous medium and four receiver stations are assumed. A hybrid imaging condition
calculates local summation before applying cross-correlation. In practice, the sum-
mation is performed implicitly by back propagating data from several neighboring
receivers at once.

A movie of accumulated seismicity can be generated by performing an integration
over time:

M(x, t) =

t∫
0

I(x, τ)dτ , (4)

Movie M(x, t) is an evolving map of microseismicity in time that could be used
to indicate rupture propagation. An image of all the sources corresponds the last
instance of M(x, t).

NUMERICAL EXAMPLES

In the following examples we demonstrate the performance of the proposed method
using two synthetic data experiments. We employ the pseudo-spectral method (Reshef
et al., 1988) to solve the acoustic wave equation, with an exponential decay absorbing
boundary condition (Cerjan et al., 1985). The seismic sources are assumed to be a

TCCS

Sun et al. 5 Source location imaging

Ricker wavelet with a peak frequency of 20 Hz. The examples involve a number of
simplifications but are designed simply to test the concept of microseismic imaging
by cross-correlation imaging condition.

Three-layer model

In the first example, we used a three-layer model with six assumed microseismic
sources located within the middle layer (Figure 2a). The model is discretized on a
140 × 140 grid with 15 m spacing in both vertical and horizontal directions. The
model has sharp velocity contrasts, which generate multiple reflection events in both
forward and backward propagation.

(a) (b)

(c)

Figure 2: (a) Microseismic source locations overlaid on a three-layer velocity model.
(b) Noise-Free microseismic data from three-layer model. (c) Noisy microseismic
data from three-layer model. The traces displayed in the right panel correspond to
X = 1050 m.

We first use noise-free data (Figure 2b) to test the sensitivity of the cross-correlation
imaging condition to stratigraphic boundaries, which are common in unconventional
reservoirs. We use data from only 10 surface stations starting from X = 75 m and
ending at X = 1965 m, with an interval of 210 m. After individually backward-
propagating the receiver wavefields and applying the cross-correlation imaging condi-
tion (equation 1), we obtain a clean, high-resolution image which accurately locates
all the correct hypocenters (Figure 3a).

Next we introduce a strong random noise into the data (Figure 3b) to test the
sensitivity of the method in such a setting. By keeping the number of receivers un-

TCCS

from rsf.proj import *

def grey(custom):
 return '''
 grey labelsz=10 labelfat=2 titlesz=12 titlefat=2 label1=Depth label2=Distance unit1=m unit2=m wanttitle=n %s
 ''' %(custom)

def igrey(custom):
 return '''
 grey labelsz=10 labelfat=2 titlesz=12 titlefat=2 label1=Time label2=Distance unit1=s unit2=m wanttitle=n %s
 ''' %(custom)

Flow('top',None,'spike n1=60 n2=200 d1=15 d2=15 mag=1500')
Flow('mid',None,'spike n1=70 n2=200 d1=15 d2=15 mag=2200')
Flow('bot',None,'spike n1=70 n2=200 d1=15 d2=15 mag=3000')
Flow('vel','top mid bot','cat axis=1 ${SOURCES[1:3]} | smooth rect1=3 repeat=1 | put unit1=m unit2=m label1=Depth label2=Distance')

#Flow('vel',None,'spike n1=200 n2=200 d1=15 d2=15 | math output="x1*0.5+1500" ')

Flow('src',None,'spike n1=200 n2=200 d1=15 d2=15 nsp=6 k1=98,105,100,95,90,88 k2=60,70,90,110,130,140 mag=5000 | smooth rect1=2 rect2=2 repeat=1')

Flow('sov','vel src','add mode=a ${SOURCES[1]}')
Result('sov1','sov','window f1=30 n1=140 f2=30 n2=140 | put o1=0 o2=0 |'+ grey('allpos=y bias=1500 scalebar=y barreverse=y minval=1500 maxval=3000 title="Source location over velocity model" barlabel="V" barunit="m/s" '))

Result('vel','window f1=30 n1=140 f2=30 n2=140 | put o1=0 o2=0 |'+ grey('allpos=y bias=1500 scalebar=y barreverse=y minval=1500 maxval=3000 title="Velocity model" barlabel="V" barunit="m/s"'))

nt=2501
dt=0.001

Flow('data0 snaps data_v0','vel',
 '''
 psp snaps=${TARGETS[1]} dat_v=${TARGETS[2]} verb=y cmplx=n vref=1500 ps=y nt=%d dt=%g snap=1 abc=y nbt=30 ct=0.01 src=0 n_srcs=6 spz=100,105,100,95,90,88 spx=60,70,90,110,130,140 f0=20,20,20,20,20,20 t0=.1,.3,.5,.7,.9,1.1 A=1,1,1,1,1,1
 '''%(nt,dt))

#Flow('data','data0','noise var=0.01 type=y seed=1573')
#Flow('data_v','data_v0','noise var=0.01 type=y seed=5438')
Flow('data','data0','cp')
Flow('data_v','data_v0','cp')
#Flow('data','data0','shapeagc eps=0 rect1=40 rect2=10')
#Flow('data_v','data_v0','shapeagc eps=0 rect1=40 rect2=10')

Plot('snaps','window j3=10 | grey gainpanel=a color=g title="Microseismic events" ', view=1)
Flow('snapsm','snaps','window j3=4')
Flow('snapsov','vel snapsm','window f1=30 n1=140 f2=30 n2=140 | put o1=0 o2=0 |spray axis=3 n=626 | add ${SOURCES[1]} scale=1,9000')
Plot('snapsov','window j3=10 | grey gainpanel=a color=g title="Microseismic events" ', view=1)
Result('data',igrey('title="Surface array data"'))
Result('data_v',igrey('title="Downhole array data"'))

Plot('datall','data',igrey('title="Surface array data" screenht=11'))
Plot('trace','data','window n2=1 f2=70 | scale axis=1 | graph transp=y yreverse=y dash=0 plotcol=6 plotfat=3 label1=Time unit1=s label2="Amplitude" unit2= wanttitle=n labelfat=2 labelsz=6 screenwd=3 screenht=11 wherexlabel=top whereylabel=right')
Result('datatrace','datall trace','SideBySideIso')

Flow('imgb snapsb','vel data data_v',
 '''
 psp snaps=${TARGETS[1]} verb=y cmplx=n vref=1500 ps=y snap=1 abc=y nbt=30 ct=0.01 mig=y dat=${SOURCES[1]} dat_v=${SOURCES[2]}
 ''')

Plot('snapsb','window j3=10 | grey gainpanel=a', view=1)
Result('imgb','grey wanttitle=n')

nrcv = 10
rcvint = 140/nrcv
len=0
start=5

snaps = []
for m in range(nrcv):
 mask = 'mask%d' % m
 data = 'data' + mask
 img = 'img%d' % m
 snap = 'snaps%d' % m
 snaps += [snap]
 Flow(mask,None,'spike n1=140 mag=1 k1=%d l1=%d | sfdd type=int' %(rcvint*m+start,rcvint*m+start+len))
 Flow(data,['data',mask],'headercut mask=${SOURCES[1]}')
 Result(data,'wiggle transp=y wanttitle=n')
 Flow([img,snap],['vel',data],
 '''
 psp snaps=${TARGETS[1]} verb=y cmplx=n vref=1500 ps=y snap=1 abc=y nbt=30 ct=0.01 mig=y dat=${SOURCES[1]}
 ''')
 Plot(snap,'window j3=10 | grey gainpanel=a wanttitle=n',view=1)
 Result(img,'grey wanttitle=n')

#Flow('ccr0',snaps,'math a=${SOURCES[1]} b=${SOURCES[2]} c=${SOURCES[3]} e=${SOURCES[4]} f=${SOURCES[5]} g=${SOURCES[6]} output="input^2*a^2*b^2*c^2*e^2*f^2*g^2" ')
Flow('ccr0',snaps,'add mode=m ${SOURCES[1:%d]}'% nrcv)
Plot('ccr0','window j3=10 | grey gainpanel=a pclip=99.9 wanttitle=n', view=1)

Flow('stack',snaps,'add mode=a ${SOURCES[1:%d]}'%(nrcv))
Flow('autoccr','stack','math output="input*input" ')
Flow('autoccr-stack','autoccr','stack axis=3')
Plot('stack','window j3=10 | grey gainpanel=a', view=1)
Result('autoccr-stack','grey pclip=99.6 allpos=y scalebar=n title="Auto-correlation" color=I')

#Flow('wfnew','ccr0 stack','math output="abs(input)" | swnorm size=100 log=n perc=10 | smooth rect3=50 repeat=4 | math b=${SOURCES[1]} output="input*b"')
Flow('wfnew','ccr0','math output="abs(input)" | swnorm size=100 log=n perc=10 | smooth rect3=20 repeat=2 | ricker1 frequency=20')
Result('wfnew','stack axis=3 | put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations" color=g'))
Flow('data-new snaps-new','vel wfnew',
 '''
 sfpspp snaps=${TARGETS[1]} wave=${SOURCES[1]} verb=y cmplx=n vref=1500 ps=y nt=%d dt=%g snap=1 abc=y nbt=30 ct=0.01 src=0 n_srcs=1 spz=98,105,100,95,90,88 spx=60,70,90,110,130,140 f0=20,20,20,20,20,20 t0=.4,.7,1.0,.3,.9,0.8 A=1,1,1,1,1,1
 '''%(nt,dt))
Result('data-new',igrey('title="Surface array data"'))

Flow('movieauto','autoccr','transp plane=13 memsize=10000 | causint | window j1=40 | transp plane=13 memsize=10000 ')
Plot('movieauto','grey gainpanel=a pclip=99 color=g title="Cross-correlation" ', view=1)

Flow('location0','ccr0',' threshold pclip=5 | stack axis=3 | math output=input')
Result('location0','put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations" color=g'))

Flow('movie','ccr0','transp plane=13 memsize=10000 | causint | window j1=40 | transp plane=13 memsize=10000 ')
Plot('movie','grey gainpanel=a pclip=99.5 color=g title="Cross-correlation" ', view=1)

##
time reversal
Flow('rev0',snaps,'add mode=a ${SOURCES[1:%d]}'% nrcv)
Flow('location1','rev0','stack axis=3')
Result('location1','put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations" color=g'))
Plot('movie1','rev0','window j3=40 | reverse which=4 | grey gainpanel=a pclip=99.5 color=g title="Time-reversal"', view=1)

Flow('data-noise','data0','noise var=0.02 type=y seed=1573')
Plot('datall-noise','data-noise',igrey('title="Surface array data" screenht=11'))
Plot('trace-noise','data-noise','window n2=1 f2=70 | scale axis=1 | graph transp=y yreverse=y dash=0 plotcol=6 plotfat=3 label1=Time unit1=s label2="Amplitude" unit2= wanttitle=n labelfat=2 labelsz=6 screenwd=3 screenht=11 wherexlabel=top whereylabel=right')

snaps = []
for m in range(nrcv):
 mask = 'mask%d' % m
 data = 'ndata' + mask
 img = 'nimg%d' % m
 snap = 'nsnaps%d' % m
 snaps += [snap]
 Flow(data,['data-noise',mask],'headercut mask=${SOURCES[1]}')
 Result(data,'wiggle transp=y wanttitle=n')
 Flow([img,snap],['vel',data],
 '''
 psp snaps=${TARGETS[1]} verb=y cmplx=n vref=1500 ps=y snap=1 abc=y nbt=30 ct=0.01 mig=y dat=${SOURCES[1]}
 ''')
 Plot(snap,'window j3=10 | grey gainpanel=a wanttitle=n', view=1)
 Result(img,'grey wanttitle=n')

Flow('ccr0-noise',snaps,'add mode=m ${SOURCES[1:%d]}'% nrcv)
Plot('ccr0-noise','window j3=10 | grey gainpanel=a pclip=99.9 wanttitle=n', view=1)

Flow('location0-noise','ccr0-noise',' threshold pclip=5 | stack axis=3 | math output=input')

##
moving stuffs around
Result('datatrace-clean','datall trace','SideBySideIso')
Result('location0-clean','location0','put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations" color=g'))

Result('datatrace-noisy','datall-noise trace-noise','SideBySideIso')
Result('location0-noisy','location0-noise','put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations" color=g'))

len=5

snaps = []
for m in range(nrcv):
 mask = 'hmask%d' % m
 data = 'hdata' + mask
 img = 'himg%d' % m
 snap = 'hsnaps%d' % m
 snaps += [snap]
 Flow(mask,None,'spike n1=140 mag=1 k1=%d l1=%d | sfdd type=int' %(rcvint*m+start,rcvint*m+start+len))
 Flow(data,['data-noise',mask],'headercut mask=${SOURCES[1]}')
 Result(data,'wiggle transp=y wanttitle=n')
 Flow([img,snap],['vel',data],
 '''
 psp snaps=${TARGETS[1]} verb=y cmplx=n vref=1500 ps=y snap=1 abc=y nbt=30 ct=0.01 mig=y dat=${SOURCES[1]}
 ''')
 Plot(snap,'window j3=10 | grey gainpanel=a wanttitle=n', view=1)
 Result(img,'grey wanttitle=n')

Flow('ccr0-hyb',snaps,'add mode=m ${SOURCES[1:%d]}'% nrcv)
Plot('ccr0-hyb','window j3=10 | grey gainpanel=a pclip=99.9 wanttitle=n', view=1)

Flow('location0-hyb','ccr0-hyb',' threshold pclip=5 | stack axis=3 | math output=input')

Result('location0-hyb','put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations" color=g'))

End()

Sun et al. 6 Source location imaging

changed, the final image contains some false image points clustered around reflection
boundaries. Additionally, although the image still contains all the true hypocenters,
they are not well focused, i.e., some of the true hypocenters split across neighboring
points.

To remove the artifacts caused by a low SNR, we employ the hybrid imaging
condition (equation 3) by including five receivers in one station. For example, the
station at X = 75 m now includes five receivers with an interval of 15 m. We
still perform ten backward propagations, with each wavefield using data from five
neighboring receivers. The image contains significantly less artifacts, with only one
defocused point corresponding to the rightmost hypocenter (Figure 3c).

(a) (b) (c)

Figure 3: (a) Microseismic source locations imaged by the cross-correlation imag-
ing condition using noise-free data. (b) Microseismic source locations imaged
by the cross-correlation imaging condition using noisy data. (c) Microseis-
mic source locations imaged by the hybrid imaging condition using noisy data.

Marmousi model

For the second example, we create a somewhat more realistic scenario by using a
portion of the Marmousi velocity model (Versteeg, 1994). The model dimension
is 200 × 200 with a spatial sampling rate of 8 m along the vertical direction and
12 m along the horizontal direction. The model features a series of nearly parallel
stratigraphic layers. To mimic an imaginary hydraulic fracturing process, we design
three periods of assumed microseismicity propagating from left to right with a total
of eighteen hypocenters, which corresponds to three stages of perforations (Figure 4).
The data has a high level of random background noise (Figure 5). We employ the
hybrid imaging condition using ten stations starting from X = 0 m with a spacing of
240 m. Each station is again comprised of five neighboring sensors with an interval
of 12 m. The images computed from the surface array data accurately locates all the
hypocenters, and evolve with time according to equation 4 (Figures 6a, 6b and 6c).

So far we have been focusing on using data from surface arrays. Recently, there
is a growing use of multiple monitoring configurations such as combining downhole

TCCS

Sun et al. 7 Source location imaging

Figure 4: Microseismic source locations overlaid on Marmousi velocity model. A total
of three stages of microseismicity are assumed, each with six hypocenters.

Figure 5: Noisy microseismic data from Marmousi model. The trace in the right
panel corresponds to X = 1.2 km.

arrays with surface sensors to provide better wavefield sampling (Maxwell, 2014). If
available, data from downhole arrays/sensors can actually help improve the spatial
resolution of imaged source locations, particularly in the vertical direction. In the last
test, we combine data from the original surface arrays with data from four extra down-
hole sensors located at X = 0 km and Z = [0.24 km, 0.64 km, 1.04 km, 1.44 km]
respectively. The corresponding images demonstrate significantly higher vertical res-
olution thanks to the better sampling of the wavefield (Figures 6d, 6e and 6f). Our
experiment confirms that combining surface and vertical borehole arrays can improve
image resolution.

DISCUSSION AND CONCLUSIONS

Real-time microseismic monitoring provides invaluable information about stimulated
fracture networks during hydraulic fracturing. Recently, wireless sensor networks
have emerged as an effective tool for surface monitoring (Song et al., 2009). Wireless
networks are easier to deploy than wired networks. Additionally, the computation
and communication capabilities of sensor nodes can be utilized for in-situ data pro-
cessing in real-time (Kamath et al., 2013; Song et al., 2015). To enable microseismic
monitoring using computation on distributed sensor networks, we have presented an
approach where wavefield propagation can be performed independently using data
collected by each station. Future research involves optimizing image reduction un-

TCCS

from rsf.proj import *
from rsf.gallery import marmousi

def grey(custom):
 return '''
 grey labelsz=10 labelfat=2 titlesz=12 titlefat=2 label1=Depth label2=Distance unit1=m unit2=m wanttitle=n %s
 ''' %(custom)

def igrey(custom):
 return '''
 grey labelsz=10 labelfat=2 titlesz=12 titlefat=2 label1=Time label2=Distance unit1=s unit2=m wanttitle=n %s
 ''' %(custom)

prepared the data
marmousi.getvel('vel0')
Result('marmvel','vel0',grey('scalebar=y color=j allpos=y title="Marmousi Velocity Model" bias=1.5 barreverse=y'))

Flow('vel','vel0','window j1=2 j2=3 f1=50 n1=200 f2=200 n2=200 | expand top=30 bottom=30 left=30 right=30 | smooth rect1=40 rect2=40 repeat=0 | math output=input*1000 | put d1=8 d2=12 o1=0 o2=0 unit1=m unit2=m')
Result('vel','window f1=30 n1=200 f2=30 n2=200 | put o1=0 o2=0 |'+ grey('allpos=y bias=1570 scalebar=y barreverse=y minval=1570 maxval=4340 title="Velocity model" barlabel="V" barunit="m/s" color=j'))

Flow('src',None,
 '''
 spike n1=260 n2=260 d1=0.008 d2=0.012 nsp=18
 k1=120,110,135,100,130,99,123,136,140,117,105,128,117,105,129,131,139,123
 k2=80,88,83,85,82,90,120,116,121,117,125,130,160,155,168,171,166,162
 mag=5000 | smooth rect1=2 rect2=2 repeat=1
 ''')

Flow('sov','vel src','add mode=a ${SOURCES[1]}')
Result('sov','window f1=30 n1=200 f2=30 n2=200 | put o1=0 o2=0 |'+ grey('allpos=y bias=1570 scalebar=y barreverse=y minval=1570 maxval=4340 title="Source location over velocity model" barlabel="V" barunit="m/s" color=j'))

nt=3501
dt=0.001

Flow('data0 snaps data_v0','vel',
 '''
 psp snaps=${TARGETS[1]} dat_v=${TARGETS[2]} verb=y cmplx=n vref=1.5 ps=y nt=%d dt=%g snap=1 abc=y nbt=30 ct=0.01 src=0 n_srcs=18
 spz=120,110,135,100,130,99,123,136,140,117,105,128,117,105,129,131,139,123
 spx=80,88,83,85,82,90,120,116,121,117,125,130,160,155,168,171,166,162
 f0=30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30
 t0=0.1,0.21,0.32,0.43,0.55,0.68,0.9,1.0,1.13,1.21,1.32,1.45,1.7,1.82,1.92,2.03,2.11,2.24
 A=1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
 '''%(nt,dt))

Flow('data','data0','noise var=1e-1 type=y seed=12005')
Flow('data_v','data_v0','noise var=1e-1 type=y seed=22015')

Plot('snaps','window j3=10 | grey gainpanel=a wanttitle=n', view=1)
Flow('snapsm','snaps','window j3=4')
Flow('snapsov','vel snapsm','window f1=30 n1=200 f2=30 n2=200 | put o1=0 o2=0 |spray axis=3 n=876 | add ${SOURCES[1]} scale=1,9')
Plot('snapsov','window j3=10 | grey gainpanel=a color=g title="Microseismic events" ', view=1)

Result('data','put o2=0 |'+igrey('title="Surface array data"'))
Result('data_v','put o2=0 |'+igrey('title="Downhole array data"'))
Result('data0','put o2=0 |'+igrey('title="Surface array data"'))

Plot('datall','data','put o2=0 |'+igrey('title="Surface array data" screenht=11'))
Plot('trace','data','window n2=1 f2=100 | scale axis=1 | graph transp=y yreverse=y dash=0 plotcol=6 plotfat=3 label1=Time unit1=s label2="Amplitude" unit2= wanttitle=n labelfat=2 labelsz=6 screenwd=3 screenht=11 wherexlabel=top whereylabel=right')
Result('datatrace','datall trace','SideBySideIso')

Flow('imgb snapsb','vel data data_v',
 '''
 psp snaps=${TARGETS[1]} verb=y cmplx=n vref=1.5 ps=y snap=1 abc=y nbt=30 ct=0.01 mig=y dat=${SOURCES[1]} dat_v=${SOURCES[2]}
 ''')

Plot('snapsb','window j3=10 | grey gainpanel=a wanttitle=n', view=1)
Result('imgb','grey wanttitle=n')

nx = 200
tmp = 10
nrcv = tmp
rcvint = nx/nrcv
len=5
start=1

snaps = []
for m in range(nrcv):
 mask = 'mask%d' % m
 data = 'data' + mask
 img = 'img%d' % m
 snap = 'snaps%d' % m
 snaps += [snap]
 if (1):
 nsp = 0
 klist = ''
 for i in range(len+1):
 k1 = 1 + m*rcvint + i*rcvint/(len+1)
 klist += '%d,' %k1
 nsp += 1
 Flow(mask,None,'spike n1=%d mag=1 k1=%s nsp=%d | sfdd type=int' %(nx,klist,nsp))
 else:
 Flow(mask,None,'spike n1=%d mag=1 k1=%d l1=%d | sfdd type=int' %(nx,rcvint*m+start,rcvint*m+start+len))
 Flow(data,['data',mask],'headercut mask=${SOURCES[1]}')
 Result(data,'wiggle transp=y wanttitle=n')
 Flow([img,snap],['vel',data],
 '''
 psp snaps=${TARGETS[1]} verb=y cmplx=n vref=1.5 ps=y snap=1 abc=y nbt=30 ct=0.01 mig=y dat=${SOURCES[1]}
 ''')
 Plot(snap,'window j3=10 | grey gainpanel=a wanttitle=n', view=1)
 Result(img,'grey wanttitle=n')

Flow('ccr0',snaps,'add mode=m ${SOURCES[1:%d]}'% nrcv)
Plot('ccr0','window j3=10 | grey gainpanel=a pclip=99.9', view=1)

Flow('location0','ccr0','threshold pclip=5 | stack axis=3 | math output=input')
Result('location0','put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations (Surface)" color=g'))

Flow('stack',snaps,'add mode=a ${SOURCES[1:%d]}'%(nrcv))
Flow('autoccr','stack','math output="input*input" | stack axis=3')
Result('autoccr','put o1=0 o2=0 |'+ grey('allpos=y scalebar=n wanttitle=n color=I'))
Plot('stack','window j3=10 | grey gainpanel=a wanttitle=n', view=1)

Flow('wfnew','ccr0 stack','math output="abs(input)" | swnorm size=100 log=n perc=1 | smooth rect1=1 rect2=1 rect3=50 repeat=2| swnorm size=100 log=n perc=1 | math b=${SOURCES[1]} output="input*b" ')
Result('wfnew','stack axis=3 | put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations" color=g'))
Flow('data-new snaps-new','vel wfnew',
 '''
 pspp snaps=${TARGETS[1]} wave=${SOURCES[1]} verb=y cmplx=n vref=1500 ps=y nt=%d dt=%g snap=1 abc=y nbt=30 ct=0.01 src=0 n_srcs=1 spz=98,105,100,95,90,88 spx=60,70,90,110,130,140 f0=20,20,20,20,20,20 t0=.4,.7,1.0,.3,.9,0.8 A=1,1,1,1,1,1
 '''%(nt,dt))
Result('data-new',igrey('title="Surface array data (predicted)"'))

Result('stage0-1','ccr0','window min3=0.0 max3=0.8 | threshold pclip=5 | stack axis=3 | math output=input | put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations (Surface)" color=g'))
Result('stage0-2','ccr0','window min3=0.0 max3=1.6 | threshold pclip=5 | stack axis=3 | math output=input | put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations (Surface)" color=g'))
Result('stage0-3','ccr0','window min3=0.0 max3=3.0 | threshold pclip=5 | stack axis=3 | math output=input | put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations (Surface)" color=g'))

vertical receiver setup
nrcv = 4
rcvint = nx/nrcv
len=0
start=30

for m in range(tmp,tmp+nrcv):
 mask = 'mask%d' % m
 data = 'data' + mask
 img = 'img%d' % m
 snap = 'snaps%d' % m
 snaps += [snap]
 Flow(mask,None,'spike n1=%d mag=1 k1=%d l1=%d | sfdd type=int' %(nx,rcvint*(m-tmp)+start,rcvint*(m-tmp)+start+len))
 Flow(data,['data_v',mask],'headercut mask=${SOURCES[1]}')
 Result(data,'wiggle transp=y wanttitle=n')
 Flow([img,snap],['vel',data],
 '''
 psp snaps=${TARGETS[1]} verb=y cmplx=n vref=1.5 ps=y snap=1 abc=y nbt=30 ct=0.01 mig=y dat_v=${SOURCES[1]}
 ''')
 Plot(snap,'window j3=10 | grey gainpanel=a wanttitle=n', view=1)
 Result(img,'grey wanttitle=n')

Flow('ccr',snaps,'add mode=m ${SOURCES[1:%d]}'%(tmp+nrcv))
Plot('ccr','window j3=10 | grey gainpanel=a pclip=99.5 allpos=y wanttitle=n', view=1)
Flow('location','ccr','threshold pclip=5 | stack axis=3 | math output=input')
Result('location','put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations (Combined)" color=g'))

Result('stage-1','ccr','window min3=0.0 max3=0.8 | threshold pclip=5 | stack axis=3 | math output=input | put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations (Surface)" color=g'))
Result('stage-2','ccr','window min3=0.0 max3=1.6 | threshold pclip=5 | stack axis=3 | math output=input | put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations (Surface)" color=g'))
Result('stage-3','ccr','window min3=0.0 max3=3.0 | threshold pclip=5 | stack axis=3 | math output=input | put o1=0 o2=0 |'+ grey('pclip=99.6 allpos=n scalebar=n title="Imaged source locations (Surface)" color=g'))

Flow('movie','ccr','transp plane=13 memsize=10000 | causint | window j1=40 | transp plane=13 memsize=10000 | put o1=0 o2=0 unit1=m unit2=m lable1=Depth label2=Distance')
Plot('movie','grey gainpanel=a pclip=99.5 color=g title="Imaged microseismic events"', view=1)

#Flow('vels','vel','window f1=30 n1=200 f2=30 n2=200 | spray axis=3 n=351')
#Result('mov','movie vels','add ${SOURCES[1]} scale=0.3,1e-5 | put o1=0 o2=0 | grey gainpanel=a pclip=99.5 allpos=y label1=Depth label2=Distance unit1=m unit2=m title="Fracture Propagation" ')

#Flow('test','ccr stack','math s=${SOURCES[1]} output="input*s"')
#Flow('movie2','test','transp plane=13 memsize=10000 | causint | window j1=10 | transp plane=13 memsize=10000 ')
#Result('movie2','grey gainpanel=a pclip=99.8 allpos=y label1=Depth label2=Distance unit1=m unit2=m title="Fracture Propagation" ')

End()

Sun et al. 8 Source location imaging

(a) (b) (c)

(d) (e) (f)

Figure 6: Accumulated microseismicity calculated by the hybrid imaging condition
using: (a)-(c) noisy data from surface array; (d)-(f) noisy data from both surface
array and downhole sensors. Each column is produced after one stage of perforation.

der the constraint of the wireless network resources (bandwidth, energy, computing
power, memory, etc).

A cross-correlation imaging condition for locating microseismic hypocenters is
capable of producing high-resolution images in both space and time, and is robust
with respect to noise when used in a hybrid formulation. Combined with a distributed
sensor network, the proposed technique should be able to provide real-time in-situ
microseismic monitoring of stimulated fracture network during hydraulic fracturing.

ACKNOWLEDGMENTS

We thank Nori Nakata and Yangkang Chen for helpful discussions. We thank TCCS
sponsors for financial support. The first author is supported additionally by the
Statoil Fellows Program at UT Austin. The second author is supported by the Jack-
son School Distinguished Postdoctoral Fellowship at UT Austin. The fourth author
acknowledges the support of the JTO faculty fellowship in the ICES at UT Austin.

TCCS

Sun et al. 9 Source location imaging

REFERENCES

Artman, B., I. Podladtchikov, and B. Witten, 2010, Source location using time-
reverse imaging: Geophysical Prospecting, 58, 861–873; doi: 10.1111/j.1365-
2478.2010.00911.x.

Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, 1985, A nonreflecting boundary
condition for discrete acoustic and elastic wave equations: Geophysics, 50, 705–708.

Claerbout, J. F., 1985, Imaging the Earth’s interior: Blackwell Scientific Publications.
Duncan, P. M., and L. Eisner, 2010, Reservoir characterization using surface micro-
seismic monitoring: Geophysics, 75, 75A139–75A146; doi: 10.1190/1.3467760.

Fink, M., 2006, Time-reversal acoustics in complex environments: Geophysics, 71,
SI151–SI164.

Gajewski, D., and E. Tessmer, 2005, Reverse modelling for seismic event charac-
terization: Geophysical Journal International, 163, 276–284; doi: 10.1111/j.1365-
246X.2005.02732.x.

Gibowicz, S. J. ., and A. Kijko, 2013, An introduction to mining seismology: Elsevier.
Kamath, G., L. Shi, and W.-Z. Song, 2013, Component-average based distributed
seismic tomography in sensor networks: Presented at the The 9th IEEE Interna-
tional Conference on Distributed Computing in Sensor Systems (IEEE DCOSS).

Kao, H., and S.-J. Shan, 2004, The source-scanning algorithm: mapping the distribu-
tion of seismic sources in time and space: Geophysical Journal International, 157,
589–594; doi: 10.1111/j.1365-246X.2004.02276.x.

Kremers, S., A. Fichtner, G. B. Brietzke, H. Igel, C. Larmat, L. Huang, and M. Käser,
2011, Exploring the potentials and limitations of the time-reversal imaging of finite
seismic sources: Solid Earth, 2, 95–105; doi: 10.5194/se-2-95-2011.

Loewenthal, D., L. Lu, R. Roberson, and J. Sherwood, 1976, The wave equation
applied to migration: Geophysical Prospecting, 24, 380–399.

Maxwell, S., 2014, Microseismic imaging of hydraulic fracturing: Improved engineer-
ing of unconventional shale reservoirs: SEG.

McMechan, G. A., 1982, Determination of source parameters by wavefield extrapo-
lation: Geophysical Journal of the Royal Astronomical Society, 71, 613–628; doi:
10.1111/j.1365-246X.1982.tb02788.x.

Montgomery, C. T., and M. B. Smith, 2010, Hydraulic fracturing: A history of an
enduring technology: Journal of Petroleum Technology, 62, 26–32.

Rentsch, S., S. Buske, S. Gutjahr, J. Kummerow, and S. Shapiro, 2010, Migration-
based location of seismicity recorded with an array installed in the main hole of
the San Andreas Fault Observatory at Depth (SAFOD): Geophysical Journal In-
ternational, 182, 477–492.

Rentsch, S., S. Buske, S. Lüth, and S. Shapiro, 2006, Fast location of seismicity: A
migration-type approach with application to hydraulic-fracturing data: Geophysics,
72, S33–S40.

Reshef, M., D. Kosloff, M. Edwards, and C. Hsiung, 1988, Three-dimensional acoustic
modeling by the Fourier method: Geophysics, 53, 1175–1183.

Shi, L., W.-Z. Song, M. Xu, Q. Xiao, J. M. Lee, and G. Xing, 2013, Imaging Seismic
Tomography in Sensor Network: Presented at the IEEE SECON.

TCCS

https://doi.org/10.1111/j.1365-2478.2010.00911.x
https://doi.org/10.1111/j.1365-2478.2010.00911.x
https://doi.org/10.1190/1.3467760
https://doi.org/10.1111/j.1365-246X.2005.02732.x
https://doi.org/10.1111/j.1365-246X.2005.02732.x
https://doi.org/10.1111/j.1365-246X.2004.02276.x
https://doi.org/10.5194/se-2-95-2011
https://doi.org/10.1111/j.1365-246X.1982.tb02788.x

Sun et al. 10 Source location imaging

Song, W., L. Shi, and G. Kamath, 2015, Real-time in-situ seismic imaging: Overview
and case study: 85th Annual International Meeting, SEG, Expanded Abstracts,
submitted.

Song, W.-Z., R. Huang, M. Xu, A. Ma, B. Shirazi, and R. Lahusen, 2009, Air-dropped
Sensor Network for Real-time High-fidelity Volcano Monitoring: Presented at the
7th Annual International Conference on Mobile Systems, Applications and Services
(MobiSys).

Versteeg, R., 1994, The Marmousi experience: Velocity model determination on a
synthetic complex data set: The Leading Edge, 13, 927–936.

Witten, B., and B. Artman, 2011, Signal-to-noise estimates of time-reverse images:
Geophysics, 76, MA1–MA10; doi: 10.1190/1.3543570.

Zhu, T., 2014, Time-reverse modelling of acoustic wave propagation in attenuating
media: Geophysical Journal International, 197, 483–494.

TCCS

https://doi.org/10.1190/1.3543570

