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ABSTRACT

We propose a fast and accurate method to estimate the radius of non-stationary
triangle smoothing for matching two seismic datasets. The smoothing radius is
estimated by non-linear least-squares inversion using an iterative Gauss-Newton
approach. We derive and implement the derivative of the smoothing operator to
compute the gradient for inversion. The proposed method is useful for imple-
menting non-stationary triangle smoothing as a low-cost edge-preserving filter.
The efficiency of the proposed method is also confirmed in several field data ex-
amples of seismic data matching applications in non-stationary local signal and
noise orthogonalization, non-stationary local slope estimation, and matching low-
resolution and high resolution seismic images from the same exploration area.

INTRODUCTION

Triangle smoothing is a widely used and efficient filtering operation that finds nu-
merous applications in regularizing seismic inverse problems and computing local at-
tributes (Fomel, 2007a,b). Non-stationary triangle smoothing uses a variable smooth-
ing radius (i.e. variable strength of smoothing) along the dimensions of the input
dataset. Greer and Fomel (2018) developed an iterative method to estimate the
smoothing radius for non-stationary smoothing for matching two seismic datasets.
The method is based on the local frequency attribute and has been applied success-
fully for approximating the inverse Hessian operator in least-squares migration (Greer
et al., 2018).

Chen and Fomel (2021) proposed a non-stationary local signal-and-noise orthog-
onalization method as an alternative to the local signal-and-noise orthogonalization
method (Chen and Fomel, 2015). In this approach, the stationary smoothing con-
straint used to obtain the local orthogonalization weights becomes non-stationary. For
highly non-stationary data, the smoothing radius is small where the signal is domi-
nant and it is large where the noise is dominant; thus, the radius adapts to achieve the
optimal stability and accuracy. Wang et al. (2021) proposed a non-stationary local
slope estimation method that balances both the stability and the resolution of slope
perturbations by controlling the strength of triangle smoothing in the shaping regular-
ization framework within the plane-wave destruction algorithm (Fomel, 2002). Chen
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(2021) introduced a multi-dimensional non-stationary triangle smoothing operator in
local time-frequency transformation (Liu and Fomel, 2013). This transformation was
proven to be effective in addressing the non-stationary nature of the input seismic
data and thus useful in several practical applications of time-frequency analysis.

Non-stationary smoothing applications improve resolution and accuracy, but they
require an additional computational cost due to the necessary radius estimation step.
In a field data example performed by Chen and Fomel (2021), the radius estimation
step in non-stationary local signal-and-noise orthogonalization increased computa-
tional time by a factor of 15. While the method of Greer and Fomel (2018) is robust
and effective, it does not provide an optimally fast convergence. We propose an alter-
native method based on Gauss-Newton iteration to estimate the triangle smoothing
radius for matching seismic datasets.We derive and implement the derivative of the
triangle smoothing operator to guide better guesses for the radius in regularized it-
erative least-squares inversion.

TRIANGLE SMOOTHING

A box filter can be defined in the Z-transform notation as follows (Claerbout, 1992):

B(Z) =
1

N
(1 + Z + Z2 + · · ·+ ZN−1) =

1− ZN

N(1− Z)
, (1)

Z = eiω∆t, (2)

where N is the number of samples included in a moving average under a rectangle
window, ω is the frequency in radians, and ∆t is the interval spacing in time. Division
by (1 − Z) is the operation of causal integration and corresponds to the following
recursion in time:

yt = yt−1 + xt−1. (3)

The adjoint of this operation is anti-causal integration, or division by (1−Z−1), and
is represented by the backward recursion in time:

yt−1 = yt + xt. (4)

A triangle filter is defined as the cross-correlation of two box filters (Claerbout, 1992)

T (Z) = B(Z)B(Z−1) =
(2− ZN − Z−N)

N2(1− Z)(1− Z−1)
. (5)

N becomes the triangle smoothing radius, or half the number of points included in a
moving average under a triangle window. The numerator in 5 is represented by the
following filtering operation:

yt = 2xt − xt−N − xt+N . (6)
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Triangle smoothing is efficient because it requires at most five additions and one
multiplication for each time sample regardless of the size of the triangle smoothing
radius. To summarize, triangle smoothing is implemented in time by the following
four steps in any order: (1) three-point filtering following equation 6, (2) causal
integration following equation 3, (3) anti-causal integration following equation 4, and
(4) division by N2. By expanding Z and redefining the triangle smoothing radius as
R, we can redefine a triangle filter as a function of smoothing radius and frequency

T (R,w) =
1

R2

[
2− 2 cos(Rw∆t)

2− 2 cos(w∆t)

]
=

1

R2

[
sin2(Rw∆t

2
)

sin2(w∆t
2
)

]
(7)

In practice, smoothing with a non-integer radius is implemented using interpolation
between two triangles with the nearest integer radii (Fomel, 2016).

TRIANGLE SMOOTHING DERIVATIVE

We introduce a new operator, the triangle smoothing derivative, which is obtained
by taking the derivative of equation 7 with respect to the radius R:

∂T

∂R
(R,ω) = iω

[
−i∆t sin(Rω∆t

2
)

2R2 sin2(ω∆t
2
)

]
− 2

R
T (R,ω). (8)

To obtain the time domain implementation of the triangle smoothing derivative, we
break down equation 8 into three parts to obtain the following three step implemen-
tation:

1. A digital filter analogous to triangle smoothing corresponding to
[
−i∆t sin(Rω∆t

2
)

2R2 sin2(ω∆t
2

)

]
in equation 8

F (Z) =
ZN − Z−N

N2(1− Z)(1− Z−1)
, (9)

implemented in time exactly like triangle smoothing with the slight modification
of replacing step (1), the recursion following equation 6, with the following
recursion:

yt = xt−N − xt+N . (10)

2. Approximating the derivative of the result of step 1 by taking the second-order
central difference. This step corresponds to multiplication by iω in equation 8.

3. Subtracting from the result of step 2 the result of smoothing normalized by 2
R
.

This step corresponds to the term − 2
R
T (R,ω) in equation 8.

To approximate the triangle smoothing derivative function for a non-integer smooth-
ing radius, we use the following interpolation:

∂T

∂Rnon−integer
(R,w) = [(N + 1)−R]

∂T

∂R
(N,w) + [(R−N)]

∂T

∂R
(N + 1, w). (11)
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The weighting coefficients are justified by matching the second-order Taylor expansion
of equations 8 and 11 around the zero frequency:

∂T

∂R
(R,w = 0) =

∂T

∂Rnon−integer
(R,w = 0) ≈ −1

6
Rw2. (12)

Both triangle smoothing and the triangle smoothing derivative have a straightforward
non-stationary implementation in the time domain that is a direct extension of the
stationary implementation because all equations depend directly on the radius.

ESTIMATING THE SMOOTHING RADIUS

To estimate the triangle smoothing radius for matching two seismic datasets, we uti-
lize the Gauss-Newton approach to solving non-linear least-squares problems (Lawson
and Hanson, 1995). We define a triangle smoothing operator with radius R applied
to data d as SR[d] and a triangle smoothing derivative operator as S′

R[d]. Given the
original data dinput and the smoothed data doutput, we define the Taylor expansion

SR[dinput] ≈ SR0 [dinput] + S′
R0
[dinput](R−R0), (13)

where R0 is the first guess for the radius and R is the best estimate for the radius.
Noting that SR[dinput] ≈ doutput, we rearrange equation 13 to solve for R:

R ≈ R0 +
(
S′
R0
[dinput]

)−1
(doutput − dinput) . (14)

We can repeat this approach and solve for the radius iteratively, where the radius at
the ith iteration is given by

Ri+1 = Ri +
(
S′
Ri
[dinput]

)−1
(doutput − SRi

[dinput]) . (15)

The proposed method in theory converges with a rate approaching quadratic, al-
though convergence is not guaranteed if the initial guess is far from the true value
(Lawson and Hanson, 1995). The method is directly extended to solve for a non-
stationary triangle smoothing radius given that both triangle smoothing and its
derivative are non-stationary. Note that for stability of the solution, we must take
care in performing the division in equation 15. We implement smooth division which
treats division as inversion and regularizes the inversion in equation 15 using shap-
ing regularization (Fomel, 2007b). The shaping regularization is controlled by its
own smoothness radius and reduces the radius estimation to stationary least-squares
estimate when the smoothing radius for shaping is set to be very large.

SMOOTHING FILTERS AND EDGE PRESERVATION

Smoothing is a filtering operation that aims to remove high-frequency noise from an
input dataset. In general, there are two classes of smoothing filters: linear and non-
linear (Hall, 2014). Linear filters such as stationary box and triangle filters smooth
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all input pixels in the same way, making them efficient. The general drawback of
using linear smoothing filters is that they fail to preserve strong edges in the input
dataset. Edge-preservation is essential in geophysical applications since edges contain
important information such as faults, and channel boundaries (Bahorich and Farmer,
1995). Non-linear filters, on the other hand, can preserve or enhance strong edges,
but they are costly relative to linear filters. Non-linear filters do not treat all input
pixels in the same way; instead, they typically smooth an input pixel based on some
statistical attribute of the pixels surrounding it. Examples of non-linear smoothing
filters include a median filter, a bilateral filter, and an anisotropic diffusion filter
(Tukey, 1970; Manduchi and Tomasi, 1998; Perona and Malik, 1990). We note that
non-stationary triangle smoothing, a linear operator, can achieve both the low cost of
linear filters and the edge-preserving ability of non-linear filters. The recursive imple-
mentation of non-stationary triangle smoothing costs exactly the same as stationary
triangle smoothing. Furthermore, the non-stationary radius values can be tailored to
the properties of the input dataset, for example, to adapt the strength of smoothing
to the edges present.

We compare the performance of non-stationary triangle smoothing against a se-
lect set of non-linear smoothing filters for a time horizon with added uniform noise of
mean zero and range equal to 15 ms shown in Figure 1b. For reference, the original
horizon without added noise is displayed in Figure 1a. We display the results of ap-
plying an 8 × 8 median filter and an anisotropic diffusion filter to the noisy horizon
in Figures 1c and 1d respectively. The result of applying a non-stationary triangle
smoothing filter defined by the non-stationary radius values is displayed in Figure 2b.
The non-stationary smoothing is applied in the horizontal direction only. To ac-
count for the smoothing required in the vertical direction, we apply vertical triangle
smoothing using a small stationary radius equal to 2. The non-stationary radius is
estimated using 5 iterations of the proposed method substituting the noisy horizon
as dinput and the anisotropic diffusion-filtered horizon as doutput. The initial guess for
the radius is a constant value equal to 4. The two strongest edges in the time horizon
at inlines 1300 and 1400 correspond to small smoothing radius values, indicating that
the estimated radius is adaptive to the edges present. The times required to com-
pute the median-filtered horizon, the anisotropic diffusion-filtered horizon, and the
non-stationary triangle-filtered horizon are 2.10 s, 1.62 s, and 0.02 s respectively. The
iterative non-stationary radius estimation step takes 0.34 s. These comparisons are
based on a MacBook Pro laptop with a 3.2 GHz M1 8-core processor. We plot time
slices at crossline 1400 for the original time horizon, the noisy horizon, and the three
filtered horizons in Figure 3. The horizon slices indicate that anisotropic diffusion does
a better job at preserving edges in the original horizon compared to median filtering.
The non-stationary triangle filter was designed to mimic the anisotropic diffusion fil-
ter, and we observe that the non-stationary triangle-filtered horizon slice does indeed
mimic the characteristics of the anisotropic diffusion-filtered horizon slice.Thus, when
taking efficiency into account, non-stationary smoothing can be the most practical
edge-preserving filter especially for large multidimensional datasets.
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(a) (b)

(c) (d)

Figure 1: Time horizon example. (a) Original time horizon. (b) Horizon with added
uniform noise of mean zero and range equal to 15 ms. (c) Noisy horizon smoothed
with an 8×8 median filter. (d) Noisy horizon smoothed with an anisotropic diffusion
filter.
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(a) (b)

Figure 2: Time horizon example. (a) Non-stationary triangle smoothing radius. (f)
Noisy horizon smoothed in the horizontal direction with a triangle filter defined by
non-stationary radius values in (a), and in the vertical direction with a stationary
radius equal to 2.

Figure 3: Time horizon example. Time slices at crossline 1400 offset from each
other by integer multiples of 200 ms for original time horizon (blue), noisy horizon
(orange), median-filtered horizon (green), anisotropic diffusion-filtered horizon (red),
and non-stationary triangle-filtered horizon (purple). Edges in the original time hori-
zon indicated by dashed grey lines.
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APPLICATIONS

We apply the proposed method to estimate the non-stationary triangle smoothing
radius within the workflow of the following seismic data matching applications: non-
stationary local signal-and-noise orthogonalization, non-stationary local slope esti-
mation, and matching and merging high-resolution and low-resolution seismic images
acquired over the same area.

Non-stationary local signal and noise orthogonalization

Given an initial estimate of the signal s and noise n, the locally orthogonalized signal
ŝ and locally orthogonalized noise n̂ can be expressed as

ŝ = s+w ◦ s (16)

n̂ = n−w ◦ n (17)

where w is the local orthogonalization weight (Chen and Fomel, 2015) and ◦ is the
element-wise product. The local orthogonalization weight can be solved for via the
following regularized least-squares problem (Chen and Fomel, 2021):

argmin
w

∥ Sw − n ∥22 +R(w), (18)

where S is the diagonal matrix of s and R(w) is the regularization term. Based on
the shaping regularization method (Fomel, 2007b), the non-stationary local orthogo-
nalization weight can be obtained as

w = [λ2I+T(STS− λ2I)]−1TSTn, (19)

where T is a non-stationary triangle smoothing operator, I is an identity matrix, and
λ =∥ s ∥22. To obtain T, Chen and Fomel (2021) propose using the iterative radius
estimation approach of Greer and Fomel (2018). The approach of Greer and Fomel
(2018) is based on an optimization problem solved by a line-search method that aims
to minimize the difference in local frequency between the low-pass filtered seismic data
and the seismic data smoothed via a non-stationary triangle smoothing operator. We
will perform this application on a 2D field dataset shown in Figure 4a with the aim of
separating coherent seismic signals from random noise. We will compare the results of
non-stationary local signal-and-noise orthogonalization using the line-search method
of Greer and Fomel (2018) and the proposed Gauss-Newton method to obtain the
non-stationary triangle smoothing constraint. The initial estimates of signal and
noise displayed in Figures 6a and 6d respectively are obtained using the traditional
f-x predictive filtering method (Canales, 1984). The non-stationary smoothing radii
obtained using 5 iterations of the line-search method and 5 iterations of the proposed
method are displayed in Figures 5a and 5b respectively. For the proposed method,
we directly substitute the raw field data as dinput and the 20 Hz low-pass filtered data
as doutput in equation 15 without accounting for local frequency. In this example,

TCCS



Alomar and Fomel 9 Non-stationary triangle smoothing

(a) (b)

Figure 4: Field data example 1. (a) Raw Field Data. (b) Magnified section.

(a) (b)

Figure 5: Field data example 1. Estimated non-stationary smoothing radius using
5 iterations of (a) the line-search approach proposed by Chen and Fomel (2021) and
(b) the proposed Gauss-Newton approach.
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bypassing the local frequency calculation step makes the proposed Gauss-Newton
method faster than the line-search method by a factor of 72.

The locally orthogonalized signal and noise using the line-search radius are shown
in Figures 6b and 6e respectively, and the locally orthogonalized signal and noise
using the Gauss-Newton radius are shown in Figures 6c and 6f respectively. The
local similarity is a metric that can be used to evaluate signal and noise separation
(Chen and Fomel, 2015). The local similarity between the signal and noise using the
f-x method, non-stationary orthogonalization using the line-search radius, and non-
stationary orthogonalization using the Gauss-Newton radius is displayed in Figures
7a, 7b, and 7c respectively. The proposed method does the best job of separating
coherent signals from random noise since its corresponding local similarity values
are the smallest. The zoomed in results of signal and noise separation for the three
methods are displayed in Figure 8. In the zoomed in signals, we point to the areas
where the signal is stronger for non-stationary orthogonalization using the proposed
Gauss-Newton method compared to the two other approaches. In the zoomed in noise
results, these same areas correspond to locations of higher signal leakage for the two
other methods compared to the proposed method. Thus, from a visual standpoint,
the proposed method recovers the strongest signals and also achieves the least signal
leakage in the removed noise.

Non-stationary local slope estimation

Local slope estimation for seismic data is an application of the plane-wave destruction
(PWD) algorithm (Fomel, 2002). The PWD algorithm is based on the local plane-
wave differential equation

σ
∂d

∂t
+

∂d

∂x
= 0, (20)

where d is the wavefield, t and x are time and space, and σ is the local slope. The
general solution of equation 20 in the frequency domain is expressed as

d̂(x) = d̂(0)eiwσ (21)

This solution indicates a two-term prediction-error filter in the F-X domain

b0d̂(x) + b1d̂(x− 1) = 0 (22)

where b0 = 1 and b1 = −eiwσ. The PWD prediction error filter can be transformed
into the Z-transform notation as

A(Zt, Zx)D(Zt, Zx) = 0 (23)

where

A(Zt, Zx) = (1− Zx
L(Zt)

L(1/Zt)
) (24)
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(a) (b) (c)

(d) (e) (f)

Figure 6: Field data example 1. De-noised data using the (a) f-x method, (b) non-
stationary orthogonalization using line-search radius proposed by Chen and Fomel
(2021) for regularization, and (c) non-stationary orthogonalization using proposed
Gauss-Newton radius for regularization. (d-f) Removed noise corresponding to (a-c),
respectively.
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(a) (b) (c)

Figure 7: Field data example 1. Local similarity of de-noised data and removed noise
for (a) f-x method, (b) non-stationary orthogonalization using the line-search radius
proposed by Chen and Fomel (2021), and (c) non-stationary orthogonalization using
the proposed Gauss-Newton radius.

(a) (b) (c)

(d) (e) (f)

Figure 8: Field data example 1. (a-f) Magnified sections corresponding to framed
boxes in Figure 6 (a-f) respectively.
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L(Zt)/L(1/Zt) is an all-pass filter that allows equation 20 to be transformed into the
following non-linear inverse problem

H(σ)d = 0 (25)

where H(σ) is a convolutional operator that is non-linear with respect to σ. This
non-linear problem can be solved for via the following least-squares method

H(σn)d = J∆σn (26)

where J is the Jacobian matrix with respect to σ and can be expressed as J = H′(σn)d
where H′ is the derivative form of the PWD filter. A smooth and stable slope update
can be obtained using the shaping regularization method

∆σm
n = S[∆σm−1

n + JT (H(σn)d− J∆σm−1
n )] (27)

where ∆σm
n is the slope update at the mth iteration and S is a shaping operator. The

solution according to the shaping regularization method is

∆σ̂n = T[λ2I+TT (JTJ− λ2I)T]−1TTJTH(σn)d (28)

where T is a non-stationary triangle smoothing operator. Wang et al. (2021) propose
designing a non-stationary smoothing constraint with the concept of signal reliability.
The smoothing radius is meant to be small in areas where the signal dominates, and
large in areas where the noise dominates. Wang et al. (2021) propose using the
iterative radius estimation method of Greer and Fomel (2018), matching the local
frequency of the low-pass filtered seismic data, and the seismic data smoothed via
a non-stationary triangle smoothing operator. Wang et al. (2021) also introduce
an additional re-scaling step to constrain the estimated radius between some chosen
minimum and maximum values.

We propose an alternative faster approach of obtaining the non-stationary smooth-
ing constraint that estimates local slopes similar in accuracy to the slopes estimated
using the approach of Wang et al. (2021). The proposed approach is summarized in
the following three-steps: (1) estimating a noisy local slope using a small stationary
radius, (2) applying a non-linear edge-preserving filter to the result of step 1 (e.g. fast
explicit diffusion (Grewenig et al., 2010)), and (3) using the proposed Gauss-Newton
method of estimating the non-stationary radius substituting the result of step 1 as
dinput and the result of step 2 as doutput in equation 15. We justify this approach by
noting that the result of step 1 contains detailed local slopes that are contaminated
by high-frequency noise. The non-linear smoothing filter removes the high frequency
noise while preserving strong edges. We note that the areas where the non-linear
smoothing filter acts strongly are the areas of low signal reliability, while the areas
where the filter acts weakly are the areas of high signal reliability. Thus, the non-
stationary triangle filter defined by the estimated radius values is adaptive to signal
reliability in the input dataset.

The proposed approach is evaluated on a 2-D field dataset displayed in Figure 9a.
The estimated dip using a small stationary radius equal to 10 is displayed in Figure
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10a, and the result of applying a fast explicit diffusion filter to the estimated stationary
dip is displayed in Figure 10b. The non-stationary triangle smoothing radius obtained
using 5 iterations of the proposed method matching the dip estimaeted using a small
stationary radius and it’s fast explicit diffusion filtered version is displayed in Figure
10c, and its corresponding estimated non-stationary dip is displayed in Figure 10d.
For comparative analysis, the non-stationary radius obtained using the approach of
Wang et al. (2021) and its corresponding estimated non-stationary dip is displayed
in Figures 9b and 9c respectively.

(a) (b)

(c)

Figure 9: Field data example 2. (a) Raw field data. (b) Estimated triangle smoothing
radius using 5 iterations of the line-search approach proposed by Wang et al. (2021).
(c) Estimated dip using non-stationary smoothing radius in (b).

The estimated non-stationary slopes using the proposed approach and the ap-
proach of Wang et al. (2021) are similar from a visual standpoint. The main difference
between the two approaches is in efficiency and robustness. In the iterative radius
estimation approach of Wang et al. (2021), the local-frequency calculation step costs
6 s per iteration, adding up to a total cost of 30 s for 5 iteration. For the Gauss-
Newton method, the cost per iteration is less than 0.1 s. The main cost associated
with the proposed method is the initial computation of the estimated dip with a small
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(a) (b)

(c) (d)

Figure 10: Field data example 2. (a) Estimated Dip using a small stationary radius
equal to 12. (b) Estimated Dip using a small stationary radius equal to 12 smoothed
by a bilateral filter. (c) Estimated triangle smoothing radius using 5 iterations of
the proposed Gauss-Newton method matching (a) and (b). (d) Estimated Dip using
non-stationary smoothing radius in (c).
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stationary radius, and applying a non-linear smoothing filter to it, costing 6 s and 19
s respectively. Further, the proposed approach is more robust since we do not require
any further analysis associated with re-scaling the estimated radius between a chosen
minimum and maximum value.

Matching and merging low-resolution and high-resolution seis-
mic images

In this application, we have two seismic datasets acquired over the same area con-
taining non-stationary spatial and temporal differences in spectral content. The high-
resolution data displayed in Figure 11a has a larger frequency bandwidth and a higher
dominant frequency, producing a high-resolution image of the shallow subsurface.
The legacy data displayed in Figure 11b contains important low-frequency content
resulting in better depth coverage. The workflow for matching and merging the two
datasets developed by Greer and Fomel (2018) is summarized in the following three
steps: (1) amplitude and frequency balancing by non-stationary triangle smoothing,
(2) estimating and removing variable time shifts, and (3) blending the two images by
least-squares inversion. Here we will perform step (1) only, showing the effectiveness
of the proposed radius estimation method in balancing the spectral content between
two datasets.

We match the two datasets using the proposed radius estimation method sub-
stituting the high-resolution data as dinput, and the low-resolution data as doutput in
equation 15. The starting model for the radius is chosen carefully to preserve stabil-
ity. The initial guess for the radius displayed in Figure 12a is a smooth version of the
theoretical radius proposed by Greer and Fomel (2018). The radius estimated after 5
iterations is displayed in Figure 12b. The spectral content of the two datasets before
and after non-stationary smoothing is displayed in Figure 13, and the differences in
local frequency between the two datasets before and after non-stationary smoothing
is displayed in Figure 14. The results indicate that the frequency content between
the two datasets is better balanced after smoothing with the newly estimated radius.

CONCLUSIONS

We have introduced a fast and accurate method to estimate the non-stationary trian-
gle smoothing radius for matching seismic datasets using the Gauss-Newton approach.
The proposed method was used to show that non-stationary triangle smoothing can
be tailored to the properties of the input seismic dataset such that the smooth-
ing is low-cost and edge-preserving. This method was also shown to be effective
in field data applications of non-stationary local signal-and-noise orthogonalization,
non-stationary local dip estimation, and balancing the spectral content between two
seismic datasets acquired over the same area. Compared to the previous first-order
line-search method, it is no surprise that the proposed second-order method converges

TCCS



Alomar and Fomel 17 Non-stationary triangle smoothing

(a)

(b)

Figure 11: Field data example 3. (a) High-resolution image. (b) Low-resolution
legacy image.
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(a)

(b)

Figure 12: Field data example 3. (a) The initial guess for the smoothing radius, a
smoothed version of the theoretical radius proposed by Greer and Fomel (2018). (b)
Estimated smoothing radius using 5 iterations of the proposed Gauss-Newton method
matching the high-resolution data and the 18 Hz high-pass filtered low-resolution
data.
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(a)

(b)

Figure 13: Field data example 3. Normalized spectra of low-resolution legacy data
(red) and high-resolution data (blue) (a) before and (b) after 18 Hz high-pass filtering
of low-resolution legacy data and non-stationary smoothing of high-resolution data.
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(a)

(b)

Figure 14: Field data example 3. (a) Initial difference in local frequency between low-
resolution legacy data and high-resolution data. (b) Difference in local frequency be-
tween 18 Hz high-pass filtered low-resolution legacy data and non-stationary triangle-
smoothed high-resolution data.
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faster and to a more accurate result. An additional factor that made the proposed
method faster than the previous method is bypassing the local frequency calculation
step. Although matching local frequencies is one way to obtain a reasonable estimate
for the smoothing radius, we have shown that it was not necessary. Nonetheless,
some potential seismic data matching applications may benefit from matching local
frequencies; thus, it is worth expanding the proposed method to match local attributes
between seismic datasets. The proposed method can find additional applications in
other geophysical data analysis tasks and inverse problems that call for non-stationary
regularization.
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