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ABSTRACT

Seismic reflection images can be used to interpolate rock properties between well
logs. However, geologic faults may introduce discontinuities that interfere with
the interpolation. We propose a modification of an image guided well log in-
terpolation method that incorporates geologic structures including faults and
unconformities. We first use predictive painting to spread the lithological infor-
mation along seismic images from well locations. Then we measure the geologic
distance following seismic horizons, and modify the distance across faults during
interpolation based on fault attribute measurements. After that, painting inter-
polation not only honors the seismic horizon structures, but also gets constrained
at faults while still remaining effective within the range of conforming regions.
Both synthetic and field data examples show a significant improvement in robust-
ness of predictive painting interpolation in complex subsurface structure around
fault location.

INTRODUCTION

Well-log properties can be extended to a volume using a 3D seismic image to obtain a
global interpretation of the subsurface. Such integration of well log data and seismic
images can be used to constrain the following seismic inversion. Beginning with
tying well logs measured in depth to seismic data in two-way time (Wu and Caumon,
2016), the joint interpretation requires spatially interpolating and extrapolating the
well logs using seismic data. Several authors have studied using post-stack seismic
data together with other attributes to guide the interpolation (Taner et al., 1994;
Schultz et al., 1994; Hampson et al., 2001), while assuming that the interpolated rock
property conforms to seismic horizons.

However, picking seismic horizons can involve manual labor and subjectivity. Hale
(2010) proposed the image-guided interpolation of borehole data without picking
seismic horizons or faults using the blended neighbor interpolation method (Hale,
2009a). Rather than using only the seismic image structures, Karimi and Fomel
(2015) proposed an approach based on predictive painting (Fomel, 2010) that utilizes
both image structures and amplitudes to guide the interpolation of well logs.

Although predictive painting can guide the interpolation along conforming hori-
zons, it encounters difficulties in painting across faults or unconformities. Therefore,
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it is necessary to limit the interpolation painting only within the range of conforming
image structures.

In order to constrain well-log interpolation, seismic coherency attributes can be
measured to enhance indistinguishable faults or other geological discontinuities (Chopra
and Marfurt, 2005). Many methods were proposed to detect faults and measure fault
attributes, including computing normalized cross-correlation (Bahorich and Farmer,
1995), eigenvalues of the local covariance matrix (Gersztenkorn and Marfurt, 1999),
eigenvectors of the structure tensor (Randen et al., 2000; Hale, 2009b), and predic-
tive coherency (Karimi et al., 2015). Phillips et al. (2016) proposed a modified Sobel
filter that utilizes plane-wave destruction and plane-wave shaping. Wu (2017) re-
cently used directional structure-tensor-based coherence to measure fault likelihood
in seismic images.

We propose to apply the fault discontinuity attribute as an additional constraint
to assist seismic-guided well-log interpolation. Using this attribute, we modify the
distance between seismic traces across the fault, so that the interpolation will not be
affected by well logs obscured by the fault but only the well logs that conformally
paint at such location. We define geologic distance as the distance measured along
seismic horizons. Because geologic distance can better represent the coherence level
along seismic horizons than horizontal geometric distance, it provides a more accurate
weight for spreading and interpolating well log information.

METHOD

Predictive painting

Predictive painting (Fomel, 2010) spreads the time values along a reference trace into
the seismic volume to output the relative geologic time (RGT) attribute. Based on
plane-wave destruction method (Fomel, 2002), the predictive painting operator Pr,k

is a recursion of multiple operators that predict adjacent traces:

Pr,k = Pk−1,kPk−2,k−1 . . .Pr+1,r+2Pr,r+1. (1)

Each adjacent prediction follows the local dip patterns pk which are defined by plane-
wave destruction.

Figure 2 shows an application of predictive painting on the Sigmoid synthetic
model (Claerbout, 1992) from Figure 1. While we use the seismic reflection signals
to simulate the subsurface model, one of the seismic traces is extracted as a “well
log” measurement. With proper sampling and ideal predictive painting based on the
seismic image, we can recover the original model, which in this case is the same as
the image itself.

However, notice the fault highlighted by the box in Figure 1; predictive painting
in Figure 2 failed to capture the discontinuities along seismic horizons.
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Figure 1: Sigmoid synthetic model, including unconformities and faults.

Figure 2: Predictive painting across the seismic image from synthetic well. The
well-log synthetic is generated by copying the seismic trace at selected location.
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from rsf.proj import *
import math

###### Draw the Box ######
min1,max1=0.3,0.7
min2,max2=0.85,1.1
Flow('box.asc',None,'''echo %s n1=2 n2=5 data_format=ascii_float
    in=$TARGET'''%' '.join(map(str,(min1,min2,max1,min2,
                                    max1,max2,min1,max2,
                                    min1,min2))))
Plot('box','box.asc','''dd form=native type=complex |
    window | graph transp=y yreverse=y min1=0 max1=1.2 min2=0 max2=1.28
    wanttitle=n plotfat=5 plotcol=1 wantaxis=n''')

#####################################
###### Extract Fault Attribute ######
#####################################
Flow('sigmoid',None,'''sigmoid d1=.0032 n1=400 d2=.0032 n2=400 taper=n |
    smooth rect1=5 diff1=1 | smooth rect1=5''')
Plot('sigmoid','''window max1=1.2 |
    grey title="2D Synthetic" label1=Time label2=Distance''')
Result('sigmoid','sigmoid box','Overlay')

###### Dip Estimation ######
Flow('dip','sigmoid','dip2 rect1=10 rect2=10 order=4')
Result('syndip','dip','''window max1=1.2 |
    grey color=j label2="Distance" title=Dip scalebar=y''')

###### Plane Wave Destruction ######
Flow('pwd','sigmoid dip','pwd2 dip=${SOURCES[1]} order=3')
Flow('pws','sigmoid dip','pwsmooth dip=${SOURCES[1]} ns=3 order=3')

###### Sobel Filter ######
Flow('sobel1','pwd pws','''math pwd=${SOURCES[0]} pws=${SOURCES[1]}
    output="pwd*pwd+pws*pws"''')
Result('sobel1','grey title="Old Sobel" allpos=y')

Flow('dip12','dip','transp plane=12')
Flow('sobel2','pwd dip12',
     '''transp plane=12 |
     pwsmooth dip=${SOURCES[1]} ns=3 order=3 |
     transp plane=12''')

Flow('sobel','sobel1 sobel2','''math s1=${SOURCES[0]} s2=${SOURCES[1]}
    output="s1*s1+s2*s2"''')
Result('synsobel','sobel','''window max1=1.2 |
    grey allpos=y label2="Distance" title="Sobel"''')

Flow('dip2','sobel','odip rect1=10 rect2=10 | transp')
Result('dip2','transp | grey color=j')
Flow('smooth','sobel dip2','''transp |
    pwsmooth dip=${SOURCES[1]} ns=5 order=3 | transp |
    smooth rect1=5 rect2=5''')
Result('smooth','''window max1=1.2 |
    grey allpos=y label2="Distance" title="Smoothed Sobel"''')


##########################################
###### Well Log Predictive Painting ######
##########################################
amp=20
wellLoc = [30,200,370]
scale=10.0
r0=100.0

for well in range(3):
    log = 'log%d'%well
    Flow(log,'sigmoid','window n2=1 f2=%d'%wellLoc[well])
    Plot(log,'''scale axis=1 | math output="input*%g+%g" | window max1=1.2 |
        graph transp=y yreverse=y min2=0 max2=400 min1=0 max1=1.2
        wherexlabel=top wheretitle=bottom wanttitle=n wantaxis=n
        plotfat=3'''%(amp,wellLoc[well]))

    paint = 'paint%d'%well
    Flow(paint,['dip',log],'''pwpaint order=3 seed=${SOURCES[1]} eps=0.1
        i0=%d'''%wellLoc[well])
    Plot(paint,'''window max1=1.2 |
        grey title="Predictive Painting from Log"''')
    Result(paint,[paint,log,'box'],'Overlay')

    rbfold = 'rbfold%d'%well
    Flow(rbfold,'smooth','''faultrbf1d useinput=n
        i0=%d scale=%g r0=%g'''%(wellLoc[well],scale,r0))

    old = 'old%d'%well
    Flow(old,[paint,rbfold],'add mode=m ${SOURCES[1:2]}')

    rbf = 'rbf%d'%well
    Flow(rbf,'smooth','''faultrbf1d useinput=y
        i0=%d scale=%g r0=%g'''%(wellLoc[well],scale,r0))
    Result(rbf,'''window max1=1.2 | grey color=j scalebar=y bias=0.5
        title="RBF of log %d"'''%(well+1))

    weighted = 'weighted%d'%well
    Flow(weighted,[paint,rbf],'add mode=m ${SOURCES[1:2]}')

    seed = 'seed%d'%well
    Flow(seed,log,'math output="input*0.0"')
    dist = 'dist%d'%well
    Flow(dist,['dip',seed,'smooth'],'''distpaint order=3 eps=0.1 i0=%d
        seed=${SOURCES[1]} flt=${SOURCES[2]} faultscale=5 |
        clip2 upper=100'''%wellLoc[well])
    rbfnew = 'rbfnew%d'%well
    Flow(rbfnew,dist,'''math output="input*300" |
        math output="1./(1.+(input/%g)*(input/%g))"'''%(r0,r0))
    Result(rbfnew,'''window max1=1.2 | grey color=j scalebar=y bias=0.5
        title="New RBF of log %d"'''%(well+1))

    rbfweird = 'rbfweird%d'%well
    Flow(rbfweird,['dip',seed,'smooth'],'''distpaint order=3 eps=0.1 i0=%d
        seed=${SOURCES[1]} flt=${SOURCES[2]} faultscale=1 |
        math output="input*300" |
        math output="1./(1.+(input/%g)*(input/%g))"
        '''%(wellLoc[well],r0,r0))
    Result(rbfweird,'''window max1=1.2 | grey color=j scalebar=y bias=0.5
        title="RBF of log %d"'''%(well+1))

    weightednew = 'weightednew%d'%well
    Flow(weightednew,[paint,rbfnew],'add mode=m ${SOURCES[1:2]}')

Flow('rbfoldsum','rbfold0 rbfold1 rbfold2','add ${SOURCES[1:3]}')
Flow('oldsum','old0 old1 old2','add ${SOURCES[1:3]}')
Flow('interpold','oldsum rbfoldsum','add mode=d ${SOURCES[1:2]}')
Plot('interpold','''window max1=1.2 |
    grey title="RBF interpolation without fault"''')
Result('interpold','interpold log0 log1 log2 box','Overlay')

Flow('errold','sigmoid interpold',
    'add scale=1,-1 ${SOURCES[1:2]} | math output="abs(input)"')
Result('errold','''window max1=1.2 |
    grey scalebar=y bias=0.0015 clip=0.001 maxval=0.003
    title="Error of interpolation without fault"''')

Flow('rbfsum','rbf0 rbf1 rbf2','add ${SOURCES[1:3]}')
Flow('weightedsum','weighted0 weighted1 weighted2','add ${SOURCES[1:3]}')
Flow('interp','weightedsum rbfsum','add mode=d ${SOURCES[1:2]}')
Plot('interp','''window max1=1.2 |
    grey title="RBF interpolation with fault"''')
Result('interp','interp log0 log1 log2 box','Overlay')

Flow('err','sigmoid interp',
    'add scale=1,-1 ${SOURCES[1:2]} | math output="abs(input)"')
Result('err','''window max1=1.2 |
    grey scalebar=y bias=0.0015 clip=0.001 maxval=0.003
    title="Error of interpolation with Sobel"''')

Flow('rbfnewsum','rbfnew0 rbfnew1 rbfnew2','add ${SOURCES[1:3]}')
Flow('weightednewsum','weightednew0 weightednew1 weightednew2',
    'add ${SOURCES[1:3]}')
Flow('interpnew','weightednewsum rbfnewsum','add mode=d ${SOURCES[1:2]}')
Plot('interpnew','''window max1=1.2 |
    grey title="New RBF interpolation with fault"''')
Result('interpnew','interpnew log0 log1 log2 box','Overlay')

End()
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Modified radial basis function interpolation

In order to interpolate the rock properties predicted by several well logs, Karimi and
Fomel (2015) used a weighted summation of the painting predictions. The weights
were calculated by radial basis function (RBF) ϕ(d) = ϕ(|xk − xr|), whose value
decays along the increasing distance (Micchelli, 1984). An inverse quadratic form of
the RBF is:

ϕ(d) =
1

1 + (d/d0)
2 , where d0 > 0. (2)

Then the interpolation can be calculated as below:

S(x) =

∑N
r=1 ϕ(|x− xr|)Sr(x)∑N

r=1 ϕ(|x− xr|)
, (3)

where Sr is the result of spreading well log at well location xr into the seismic data
and N represents the total number of used wells.

We propose to extend the definition of d from simply the horizontal distance
|xk − xr| to the geologic distance that is measured along the seismic horizon:

d̃(xk,xr) =
∫ xk

xr

(∆l(x) + λf(x)) dh(x), (4)

in which xr, xk are points along a seismic horizon h(x); ∆l(x) is the curve length of
the horizon, it can be calculated by ∆l(x) = ∆x

√
1 + p2 given local slope estimation

p; f(x) is fault attribute and λ represents the distance penalty parameter, this term
exaggerates the distance across fault. The geologic distance indicates the decay of in-
formation confidence from the reference trace. We perform this integration efficiently
by accumulative predictive painting.

NUMERICAL EXAMPLES

Synthetic data test

First of all, we extracted 3 traces from the Sigmoid model at lateral locations 0.09km,
0.64km, and 1.19km. The predictive painting of the trace sampled at 0.64km is
shown in Figure 2. Then we compute the interpolation weighted by RBF according
to conventional geometric distance d(xk, xr), the result is shown in Figure 3a.

Next, we incorporate the proposed d̃(xk,xr) in the interpolation for comparison.
We measure the fault attribute using plane-wave Sobel filter proposed by Phillips
et al. (2016). In result Figure 3b, the recovery at the fault location is significantly
improved, because geologic distance weights prevent the well log information from
incorrectly spreading across the fault.
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(a) (b)

Figure 3: Interpolation results with (a) conventional RBF coefficients without con-
sidering faults, and (b) proposed modified RBF coefficients using geologic distance.

Field data test

We also test the workflow on a field data example collected at Teapot Dome. Figure 4
shows the input seismic section. It is a 2D line extracted from the original 3D data
volume which has been converted from time to depth. The seismic image will be used
to guide the interpolation of 11 density well logs scattered along the section, they
have been tied to the seismic volume using automatic seismic-well tying technique
(Wu and Caumon, 2016).

Figure 4: 2D seismic section from Teapot Dome data. The section is extracted from
the original 3D data volume along a curve that passes through severa well locations.

In this example, we use the method proposed by Wu (2017) based on structure-
tensor to measure the fault attribute. It is shown in Figure 5 along with the geologic
distance d̃ with regard to a reference well at about 12km. The image shows that at
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from rsf.proj import *
import math

## ###### Draw the Box ######
## min1,max1=0.3,0.7
## min2,max2=0.85,1.1
## Flow('box.asc',None,'''echo %s n1=2 n2=5 data_format=ascii_float
##     in=$TARGET'''%' '.join(map(str,(min1,min2,max1,min2,
##                                     max1,max2,min1,max2,
##                                     min1,min2))))
## Plot('box','box.asc','''dd form=native type=complex |
##     window | graph transp=y yreverse=y min1=0 max1=1.2 min2=0 max2=1.28
##     wanttitle=n plotfat=5 plotcol=1 wantaxis=n''')

#################################
###### Import seismic data ######
#################################
Flow('teapot','seis','window max1=1.8')
Result('teapot','''window max1=1.8 |
    grey title="Teapot Dome"''')

###### Dip Estimation ######
Flow('dip','teapot','dip2 rect1=10 rect2=10 order=4')
Result('syndip','dip','''window max1=1.8 |
    grey color=j label2="Distance" title="Dip Estimation" scalebar=y''')

Flow('fault','flt','window max1=1.8')
Result('fault','''window max1=1.8 |
    grey allpos=y pclip=99.9 label2="Distance" title="Fault Attribute"
    scalebar=y barlabel="Fault Likelihood"''')


##########################################
###### Well Log Predictive Painting ######
##########################################
amp=40
wellLoc = [ 52,203,353, 15, 77,105,133,181,247,246,264,263,285]
wellMin = [  0, 59,  0,  0,  0,  0,  0, 68, 99,225,103,217,  0]
wellMax = [313,305,222,111,197,193,120,169,225,290,217,263,113]
wellLen = [313,246,222,111,197,193,120,101,126, 65,114, 46,113]
# wellLoc = [ 52,203,353,133,247]
# wellMin = [  0, 59,  0,  0, 99]
# wellMax = [313,305,222,120,225]
# wellLen = [313,246,222,120,126]
r0=4

logPlotCollect=[]
log2PlotCollect=[]
rbfCollect=[]
weightedCollect=[]

for well in range(13):
    log = 'log%d'%well
    Flow(log,'den','window n2=1 f2=%d'%wellLoc[well])

    seed = 'seed%d'%well
    Flow(seed,log,'mask max=1.0 | dd type=float | math output="input*50"')

    Plot(log,'''window f1=%d n1=%d |
        scale axis=1 | math output="(input-0.90)*%g+%g" |
        graph transp=y yreverse=y min2=0 max2=357 min1=0.6 max1=1.8
        wherexlabel=top wheretitle=bottom wanttitle=n wantaxis=n
        scalebar=y bartype=v plotcol=7
        plotfat=3'''%(wellMin[well],wellLen[well],amp,wellLoc[well]))
    logPlotCollect.append(log)

    log2 = 'logyellow%d'%well
    Plot(log2,log,'''window f1=%d n1=%d |
        scale axis=1 | math output="(input-0.90)*%g+%g" |
        graph transp=y yreverse=y min2=0 max2=357 min1=0.6 max1=1.8
        wherexlabel=top wheretitle=bottom wanttitle=n wantaxis=n
        scalebar=n bartype=v plotcol=1
        plotfat=3'''%(wellMin[well],wellLen[well],amp,wellLoc[well]))

    seis = 'seis%d'%well
    Result(seis,['teapot',log2],'Overlay')

    log2PlotCollect.append(log2)

    paint = 'paint%d'%well
    Flow(paint,['dip',log],'''pwpaint order=3 seed=${SOURCES[1]} eps=0.1
        i0=%d'''%wellLoc[well])
    Plot(paint,'''window max1=1.8 |
        grey title="Predictive Painting from Log %d"
        color=j scalebar=y bartype=v bias=2.3 clip=0.5
        minval=1.5 maxval=3.0 barlabel="Density (g/cc)"'''%(well+1))
    Result(paint,[paint,log],'Overlay')

    # thr=1.0
    # mask = 'mask%d'%well
    # Flow(mask,paint,'mask min=%g | dd type=float'%thr)

    dist = 'dist%d'%well
    Flow(dist,['dip',seed,'fault'],'''distpaint order=3 eps=0.1 i0=%d
        seed=${SOURCES[1]} flt=${SOURCES[2]} faultscale=50 |
        clip2 upper=500'''%wellLoc[well])
    Plot(dist,'''window max1=1.8 |
        grey color=j title="Distance Painting from Log %d"
        scalebar=y bartype=v barlabel="Geologic Distance"
        minval=0 maxval=6 bias=2 clip=3'''%(well+1))
    Result(dist,[dist,log],'Overlay')

    rbf = 'rbf%d'%well
    Flow(rbf,dist,'math output="1./(1.+(input/%g)*(input/%g))"'%(r0,r0))
    Plot(rbf,'''window max1=1.8 |
        grey color=j title="RBF (Center is Log %d)"
        scalebar=y bartype=v barlabel="RBF Interp Weight"
        bias=0.8 clip=0.4'''%(well+1))

    Result(rbf,[rbf,log],'Overlay')

    rbfCollect.append(rbf)

    weighted = 'weighted%d'%well
    Flow(weighted,[paint,rbf],'add mode=m ${SOURCES[1:2]}')
    weightedCollect.append(weighted)

Flow('rbfsum',rbfCollect,'add ${SOURCES[1:13]}')
Flow('weightedsum',weightedCollect,'add ${SOURCES[1:13]}')
Flow('interp','weightedsum rbfsum','add mode=d ${SOURCES[1:2]}')
Plot('interp','''window max1=1.8 |
    grey title="Geologic Distance Guided Interpolation" color=j
    scalebar=y bartype=v minval=1.5 maxval=3.0 barlabel="Density (g/cc)"
    bias=2.37 clip=0.35 titlesz=9 labelsz=7''')
Result('interp-tpt','interp '+' '.join(logPlotCollect),'Overlay')

Result('seisall','teapot '+' '.join(log2PlotCollect),'Overlay')

End()
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locations obscured by fault, geologic distance is magnified so that the RBF weight is
expected to be suppressed.

(a) (b)

Figure 5: (a) fault likelihood attribute based on structure-tensor method;
(b) the geologic distance d̃ computed according to the fault attribute.

Figure 6 shows the predictive painting from the same well log and its corresponding
RBF interpolation weight. Although painting prediction is conforming and smooth,
in regions obscured by faults the prediction might be incorrect; however, the interpo-
lation weight at such area will suppress the incorrect painting.

(a) (b)

Figure 6: (a) predictive painting from the well log located at about 12km lat-
erally; (b) corresponding RBF weight, which will be used in interpolation later.

Figure 7 shows the geologic distances and corresponding predictive paintings from
several other well logs.

The final interpolation of eleven wells are shown in Figure 8.

DISCUSSION

Besides faults, image guided well log interpolation can be also bounded by uncon-
formities when no auxiliary information can be used to continue the interpolation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 7: (a,c,e,g,i) geologic distances d̃ and (b,d,f,h,j) the predictive
paintings from corresponding well logs guided by the seismic image.
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Figure 8: Interpolation result using 11 well logs on Teapot Dome data.

Proper attributes can help truncate and terminate the unreliable predictive painting
at unconformity. Wu and Hale (2015) proposed a 3D unconformity attribute com-
puted from seismic amplitude. Furthermore, further research should focus on how to
determine the obscure behavior of faults on the 3D predictive painting extrapolation.

On the other hand, if the offset of the fault is given, Xue et al. (2017) proposed
an alternative approach to perform predictive painting across the fault.

CONCLUSIONS

The proposed approach to well-log interpolation provides an effective and efficient
method to build a subsurface model that integrates rock property measurements and
seismic images while honoring faults and other discontinuities. We have introduced a
new definition, geologic distance, to replace the horizontal distance in interpolation.
The new representation incorporates more structural information such as seismic hori-
zons and fault attributes. The key benefit of the proposed workflow is the significant
improvement of interpolation around fault regions, which is demonstrated in numer-
ical examples. The proposed interpolation can help build correct and robust initial
models for further seismic inversion.
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