next up previous [pdf]

Next: Connections with other approximations Up: Sripanich et al.: 3D Previous: Introduction

Nonhyperboloidal moveout approximation

Let $ t(x,y)$ represent the two-way reflection traveltime as a function of the source-receiver offset with components $ x$ and $ y$ in a given acquisition coordinate frame. We propose the following general functional form of nonhyperboloidal moveout approximation (Sripanich and Fomel, 2015a):

$\displaystyle t^2(x,y) \approx t^2_0 + W(x,y) + \frac{A(x,y)}{t^2_0+B(x,y)+\sqrt{t^4_0+2t^2_0B(x,y)+C(x,y)}} ~,$ (1)

where
$\displaystyle W(x,y)$ $\displaystyle =$ $\displaystyle W_1x^2+ W_2xy+ W_3y^2~,$  
$\displaystyle A(x,y)$ $\displaystyle =$ $\displaystyle A_1x^4+A_2x^3y+A_3x^2y^2+A_4xy^3+A_5y^4~,$  
$\displaystyle B(x,y)$ $\displaystyle =$ $\displaystyle B_1x^2+B_2xy+B_3y^2~,$  
$\displaystyle C(x,y)$ $\displaystyle =$ $\displaystyle C_1x^4+C_2x^3y+C_3x^2y^2+C_4xy^3+C_5y^4~,$  

and $ t_0$ denotes the two-way traveltime at zero offset. The total number of independent parameters in equation 1 is seventeen including $ t_0$ , $ W_i$ , $ A_i$ , $ B_i$ , and $ C_i$ . A simple algebraic transformation of equation 1 leads to the following expression in polar coordinates:
$\displaystyle t^2(r,\alpha)$ $\displaystyle \approx$ $\displaystyle t^2_0 + W_r(\alpha) r^2 +$ (2)
    $\displaystyle \frac{A_r(\alpha) r^4}{t^2_0+B_r(\alpha) r^2+\sqrt{t^4_0+2t^2_0B_r(\alpha) r^2+C_r(\alpha) r^4}} ~,$  

where
$\displaystyle W_r(\alpha)$ $\displaystyle =$ $\displaystyle \frac{1}{V^2_{nmo}(\alpha)} = W_1\cos^2 \alpha+W_2\cos \alpha \sin \alpha + W_3\sin^2 \alpha~,$  
$\displaystyle A_r(\alpha)$ $\displaystyle =$ $\displaystyle A_1\cos^4 \alpha+A_2\cos^3 \alpha \sin \alpha+A_3\cos^2 \alpha \sin^2 \alpha+$  
    $\displaystyle A_4\cos \alpha \sin^3 \alpha+A_5\sin^4 \alpha~,$  
$\displaystyle B_r(\alpha)$ $\displaystyle =$ $\displaystyle B_1\cos^2 \alpha+B_2\cos \alpha \sin \alpha+B_3\sin^2 \alpha~,$  
$\displaystyle C_r(\alpha)$ $\displaystyle =$ $\displaystyle C_1\cos^4 \alpha+C_2\cos^3 \alpha \sin \alpha+C_3\cos^2 \alpha \sin^2 \alpha+$  
    $\displaystyle C_4\cos \alpha \sin^3 \alpha+C_5\sin^4 \alpha~,$  

and $ r=\sqrt {x^2+y^2}$ represents the absolute offset and $ \alpha$ denotes the azimuthal angle from the $ x$ -axis. Along a fixed azimuth $ \alpha$ , equation 1 reduces to the generalized nonhyperbolic moveout approximation (GMA) of Fomel and Stovas (2010).



Subsections
next up previous [pdf]

Next: Connections with other approximations Up: Sripanich et al.: 3D Previous: Introduction

2017-04-20