next up previous [pdf]

Next: About this document ... Up: Chen & Fomel: EMD-seislet Previous: Acknowledgments


Bekara, M., and M. van der Baan, 2009, Random and coherent noise attenuation by empirical mode decomposition: Geophysics, 74, V89-V98.

Bryt, O., 2008, Compression of facial images using the K-SVD algorithm: Journal of Visual Communication and Image Representation, 19, 270-283.

Cai, J., S. Huang, H. Ji, Z. Shen, and G. Ye, 2013, Data-driven tight frame construction and image denoising: Applied and Computational Harmonic Analysis, doi: 10.1016/j.acha.2013.10.001.

Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2006, Fast discrete curvelet transforms: SIAM, Multiscale Modeling and Simulation, 5, 861-899.

Chen, Y., S. Fomel, and J. Hu, 2014a, Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization: Geophysics, 79, no. 5, V179-V189.

Chen, Y., S. Gan, T. Liu, J. Yuan, Y. Zhang, and Z. Jin, 2015, Random noise attenuation by a selective hybrid approach using f-x empirical mode decomposition: Journal of Geophysics and Engineering, 12, 12-25.

Chen, Y., and J. Ma, 2014, Random noise attenuation by f-x empirical mode decomposition predictive filtering: Geophysics, 79, V81-V91.

Chen, Y., C. Zhou, J. Yuan, and Z. Jin, 2014b, Application of empirical mode decomposition to random noise attenuation of seismic data: Journal of Seismic Exploration, 23, 481-495.

Du, B., and L. R. Lines, 2000, Attenuating coherent noise by wavelet transform: Exploration Geophysics, 31, 353-358.

Elad, M., J. L. Starck, P. Querre, and D. L. Donoho, 2005, Simultaneous cartoon and texture image inpainting using morphological component analysis (mca): Applied and Computational Harmonic Analysis, 19, 340-358.

Fomel, S., 2003, Seismic reflection data interpolation with differential offset and shot continuation: Geophysics, 68, 733-744.

Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Geophysics, 75, V25-V38.

Han, J., and M. van der Baan, 2013, Empirical mode decomposition for seismic time-frequency analysis: Geophysics, 78, O9-O19.

Hennenfent, G., and F. Herrmann, 2006, Seismic denoising with nonunformly sampled curvelets: Computing in Science & Engineering, 8, 16-25.

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis: Proceeding of the Royal Society of London Series A, 454, 903-995.

Ioup, J. W., and G. E. Ioup, 1998, Noise removal and compression using a wavelet transform: 68th Annual International Meeting, SEG, Expanded Abstracts, 1076-1079.

Jafarpour, B., V. K. Goyal, D. B. McLaughlin, and W. T. Freeman, 2009, Transform-domain sparsity regularization for inverse problems in geosciences: Geophysics, 74, R69-R83.

LePennec, E., and S. Mallat, 1992, Sparse geometric image representations with bandelets: 62nd Annual International Meeting, SEG, Expanded Abstracts, 1187-1190.

Liu, Y., and S. Fomel, 2010, OC-seislet: Seislet transform construction with differential offset continuation: Geophysics, 75, WB235-WB245.

Liu, Y., S. Fomel, and C. Liu, 2015, Signal and noise separation in prestack seismic data using velocity-dependent seislet transform: Geophysics, 80, no. 6, WD117-WD128.

Liu, Y., and C. Liu, 2013, Velocity-dependent seislet transform and its applications: 83rd Annual International Meeting, SEG, Expanded Abstracts, 3661-3666.

Mairal, J., F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, 2009, Non-local sparse models for image restoration: IEEE 12th International Conference on Computer Vision.

Mairal, J., G. Sapiro, and M. Elad, 2008, Learning multiscale sparse representations for image and video restoration: SIAM Multiscale Modeling Simulation, 7, 214-241.

Marple, S. L., 1987, Digital spectral analysis with applications: Prentice-Hall.

Protter, M., and M. Elad, 2009, Image sequence denoising via sparse and redundant representations: IEEE Trans Image Process, 18, 27-35.

Sweldens, W., 1995, Lifting scheme: A new philosophy in biorthogonal wavelet constructions: Wavelet applications in signal and image processing iii: Proceedings of SPIE 2569, 68-79.

Wang, D., R. Saab, O. Yilmaz, and F. J. Herrmann, 2008, Bayesian wavefield separation by transform-domain sparsity promotion: Geophysics, 73, A33-A38.

Zhang, R., and T. Ulrych, 2003, Physical wavelet frame denoising: Geophysics, 68, 225-231.

Zibulevsky, M., and B. A. Pearlmutter, 2001, Blind source separation by sparse decomposition in a signal dictionary: Neural computation, 13, 863-882.