next up previous [pdf]

Next: About this document ... Up: Chen & Ma & Previous: Acknowledgments


Aharon, M., M. Elad, and A. M. Bruckstein, 2006, The K-SVD: An algorithm for designing of evercomplete dictionaries for sparse representation: IEEE Transactions on Signal Processing, 54, 4311-4322.

Beckouche, S., and J. Ma, 2014, Simultaneous dictionary learning and denoising for seismic data: Geophysics, 79, A27-A31.

Bryt, O., 2008, Compression of facial images using the K-SVD algorithm: Journal of Visual Communication and Image Representation, 19, 270-283.

Cai, J., S. Huang, H. Ji, Z. Shen, and G. Ye, 2013, Data-driven tight frame construction and image denoising: Applied and Computational Harmonic Analysis, doi: 10.1016/j.acha.2013.10.001.

Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2006, Fast discrete curvelet transforms: SIAM, Multiscale Modeling and Simulation, 5, 861-899.

Chen, Y., and S. Fomel, 2015, Random noise attenuation using local signal-and-noise orthogonalization: Geophysics, 80, WD1-WD9.

Chen, Y., S. Fomel, and J. Hu, 2014, Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization: Geophysics, 79, V179-V189.

Chen, Y., and J. Ma, 2014, Random noise attenuation by f-x empirical mode decomposition predictive filtering: Geophysics, 79, V81-V91.

Claerbout, J. F., 2010, Basic earth imaging: Stanford Exploration Project,

Coifman, R. R., and D. L. Donoho, 1995, Translation-invariant de-noising: Wavelets and Statistics, 103, 125-150.

Do, M. N., and M. Vetterli, 2005, The contourlet transform: An efficient directional multiresolution image representation: IEEE Transactions on Image Processing, 14, 2091-2106.

Donoho, D. L., 2006, Compressed sensing: IEEE transactions on Information Theory, 52, 1289-1306.

Du, B., and L. R. Lines, 2000, Attenuating coherent noise by wavelet transform: Exploration Geophysics, 31, 353-358.

Elad, M., J. L. Starck, P. Querre, and D. L. Donoho, 2005, Simultaneous cartoon and texture image inpainting using morphological component analysis (mca): Applied and Computational Harmonic Analysis, 19, 340-358.

Engan, K., S. O. Aase, and J. H. Husoy, 1999, Method of optimal directions for frame design: IEEE International Conference on Acoustics, Speech, and Signal Processing, 5, 2443-2446.

Fomel, S., 2002, Application of plane-wave destruction filters: Geophysics, 67, 1946-1960.

Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Geophysics, 75, V25-V38.

Fomel, S., P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, 2013, Madagascar open-source software project: Journal of Open Research Software, 1, e8.

Galbraith, M., 1991, Random noise attenuation by F-X prediction: A tutorial: 61st Annual International Meeting, SEG, Expanded Abstracts, 1428-1431.

Gan, S., S. Wang, Y. Chen, Y. Zhang, and Z. Jin, 2015, Dealiased seismic data interpolation using seislet transform with low-frequency constraint: IEEE Geoscience and remote sensing letters, 12, 2150-2154.

Gulunay, N., 1986, Fx decon and complex Wiener prediction filter: 56th Annual International Meeting, SEG, Expanded Abstracts, Session: POS2.10.

Hennenfent, G., L. Fenelon, and F. Herrmann, 2010, Nonequispaced curvelet transform for seismic data reconstruction: A sparsity-promoting approach: Geophysics, 75, WB203-WB210.

Hennenfent, G., and F. Herrmann, 2006, Seismic denoising with nonunformly sampled curvelets: Computing in Science & Engineering, 8, 16-25.

Ibrahim, A., and M. D. Sacchi, 2014a, Eliminating blending noise using fast apex shifted hyperbolic Radon transform: 76th Annual International Conference and Exhibition, EAGE, Extended Abstracts.

----, 2014b, Simultaneous source separation using a robust Radon transform: Geophysics, 79, V1-V11.

Ioup, J. W., and G. E. Ioup, 1998, Noise removal and compression using a wavelet transform: 68th Annual International Meeting, SEG, Expanded Abstracts, 1076-1079.

Jafarpour, B., V. K. Goyal, D. B. McLaughlin, and W. T. Freeman, 2009, Transform-domain sparsity regularization for inverse problems in geosciences: Geophysics, 74, R69-R83.

Jolliffe, I. T., 2002, Principal component analysis, 2nd ed.: New York: Springer.

Kaplan, S. T., M. D. Sacchi, and T. J. Ulrych, 2009, Sparse coding for data-driven coherent and incoherent noise attenuation: 79th Annual International Meeting, SEG, Expanded Abstracts, 3327-3331.

Labate, D., W. Lim, G. Kutyniok, and G. Weiss, 2005, Sparse multidimensional representation using shearlets: Proceedings of the SPIE, 5914, 254-262.

LePennec, E., and S. Mallat, 2005, Sparse geometric image representations with bandlets: IEEE Transactions on Image Processing, 14, 423-438.

Liang, J., J. Ma, and X. Zhang, 2014, Seismic data restoration via data-driven tight frame: Geophysics, 79, V65-V74.

Liu, Y., and S. Fomel, 2010, OC-seislet: Seislet transform construction with differential offset continuation: Geophysics, 75, WB235-WB245.

Luo, Y., and G. T. Schuster, 1992, Wave packet transform and data compression: 62nd Annual International Meeting, SEG, Expanded Abstracts, 1187-1190.

Ma, J., and G. Plonka, 2010, The curvelet transform: IEEE signal processing magazine, 27, 118-133.

Mairal, J., F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, 2009, Non-local sparse models for image restoration: IEEE 12th International Conference on Computer Vision.

Mairal, J., G. Sapiro, and M. Elad, 2008, Learning multiscale sparse representations for image and video restoration: SIAM Multiscale Modeling Simulation, 7, 214-241.

Mallat, S. G., 2009, A wavelet tour of signal processing: The sparse way: Academic Press.

Naghizadeh, M., and M. D. Sacchi, 2010, Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data: Geophysics, 75, WB189–WB202.

Neelamani, R., A. Baumstein, and W. S. Ross, 2010, Adaptive subtraction using complex-valued curvelet transforms: Geophysics, 75, V51-V60.

Neelamani, R., A. I. Baumstein, D. G. Gillard, M. T. Hadidi, and W. L. Soroka, 2008, Coherent and random noise attenuation using the curvelet transform: The Leading Edge, 27, 240-248.

Ophir, B., M. Lustig, and M. Elad, 2011, Multi-scale dictionary learning using wavelets: IEEE Journal of Selected Topics in Signal Processing, 5, 1014-1024.

Protter, M., and M. Elad, 2009, Image sequence denoising via sparse and redundant representations: IEEE Trans Image Process, 18, 27-35.

Quan, Y., T. Zhu, J. M. Harris, R. M. Burnstad, and S. E. Zarantonello, 2011, Image integration with learned dictionaries and application to seismic monitoring: SEG expanded abstracts: 81st Annual international meeting, 4217-4222.

Rubinstein, R., M. Zibulevsky, and M. Elad, 2010, Double sparsity: learning sparse dictionaries for sparse signal approximation: IEEE Transaction on signal processing, 58, 1553-1564.

Sweldens, W., 1995, Lifting scheme: A new philosophy in biorthogonal wavelet constructions: Wavelet applications in signal and image processing iii: Proceedings of SPIE 2569, 68-79.

Vidal, R., Y. Ma, and S. Sastry, 2005, Generalized principal component analysis (gpca): IEEE Transactions on pattern analysis and machine intelligence, 27, 1945-1959.

Wang, D., R. Saab, O. Yilmaz, and F. J. Herrmann, 2008, Bayesian wavefield separation by transform-domain sparsity promotion: Geophysics, 73, A33-A38.

Yu, S., J. Ma, X. Zhang, and M. Sacchi, 2015, Denoising and interpolation of high-dimensional seismic data by learning tight frame: Geophysics, 80, V119-V132.

Zhang, R., and T. Ulrych, 2003, Physical wavelet frame denoising: Geophysics, 68, 225-231.

Zhang, X., M. Burger, and S. Osher, 2011, A unified primal-dual algorithm framework based on Bregman iteration: Journal of Scientific Computing, 46, 20-46.

Zibulevsky, M., and B. A. Pearlmutter, 2001, Blind source separation by sparse decomposition in a signal dictionary: Neural computation, 13, 863-882.