
Effects of lateral heterogeneity on time-domain

processing parametersa

aPublished in Geophysical Journal International, 2019, 219, 1181–1201

Yanadet Sripanich1, Sergey Fomel2, and Alexey Stovas3
1Formerly Department of Earth Sciences, Utrecht University, the Netherlands;
presently, PTT Exploration and Production Public Company Limited, Bangkok,

Thailand;
2Bureau of Economic Geology, The University of Texas at Austin, Austin, TX, USA;

3Department of Geoscience and Petroleum, Norwegian University of Science and
Technology, Trondheim, Norway.

TCCS

Sripanich et al. 2 Effects of lateral heterogeneity

ABSTRACT

Time-domain processing of seismic reflection data has always been an important
engine that is routinely utilized to produce seismic images and to expeditiously
construct subsurface models. The conventional procedure involves analysing pa-
rameters related to the derivatives of reflection traveltime with respect to off-
set including normal moveout (NMO) velocities (second-order derivatives) and
quartic coefficients (fourth-order derivatives). In this study, we propose to go
beyond the typical assumption of 1-D laterally homogeneous medium when re-
lating those ‘processing’ parameters to the subsurface medium parameters and
take into account the additional influences from lateral heterogeneity including
curved interfaces and smoothly variable velocities. We fill in the theoretical gap
from previous studies and develop a general framework for such connection in
layered anisotropic media. We show that in general, the influences of lateral het-
erogeneity get accumulated from all layers via a recursive relationship according
to the Fermat’s principle and can be approximately quantified in terms of the
lateral derivatives of the layer interface surfaces and velocities. Based on the
same general principle, we show that our approach can also be used to study
the lateral heterogeneity effects on diffraction traveltime and its second-order
derivative related to time-migration velocity. In this paper, we explicitly spec-
ify expressions for NMO and time-migration velocities with the influences from
both types of heterogeneity suitable for 2-D data sets and also discuss possible
extensions of the proposed theory to 3-D data sets and to parameters related to
higher-order traveltime derivatives. Using numerical examples, we demonstrate
that the proposed theory can lead to more accurate reflection and diffraction
traveltime predictions in comparison with those obtained based on the 1-D as-
sumption. Both the proposed theoretical framework and its numerical testing for
forward traveltime computation presented in this study aid in understanding the
effects from lateral heterogeneity on time-processing parameters and also serve
as an important basis for designing an efficient technique to separate those influ-
ences in important processes such as Dix inversion for a more accurate subsurface
model in the future.

INTRODUCTION

Moveout analysis plays an important role in seismic processing and subsurface param-
eter estimation (Yilmaz, 2001). With regard to pure-mode reflections, the two-way
moveout traveltimes are commonly expressed as a Taylor expansion around zero offset
with only even powers in the offset direction (Taner and Koehler, 1969). The absence
of odd powers is due to the source–receiver reciprocity of pure-mode reflections (Pech
et al., 2003; Tsvankin, 2012). The second-order and fourth-order traveltime deriva-
tives in the expansion are related to normal moveout (NMO) velocities and quartic
coefficients. Their general expressions have been studied previously (Fomel, 1994;

TCCS

Sripanich et al. 3 Effects of lateral heterogeneity

Pech et al., 2003; Pech and Tsvankin, 2004) and are usually written in terms of the
one-way traveltime derivatives of a normal-incidence ray traveling from the reflector
to the surface according to the normal-incidence-point (NIP) theorem (Krey, 1976;
Chernjak and Gritsenko, 1979; Hubral and Krey, 1980; Hubral, 1983; Gritsenko, 1984;
Fomel and Grechka, 2001).

A common assumption for evaluating the aforementioned one-way traveltime deriva-
tives and relating them to subsurface medium parameters is to consider a 1-D horizontally-
layered anisotropic medium. This assumption generally leads to traveltime and offset
being functions of only horizontal phase slownesses (ray parmeters) and allows the
traveltime derivatives to be evaluated explicitly, providing a direct bridge between
both quantities (e.g, Sripanich and Fomel, 2016; Koren and Ravve, 2017). Despite
being strictly applicable to 1-D lateral homogeneous media, this simple connection is
normally used to test the accuracy of new moveout approximations in multi-layered
media and to relate the estimated (effective) parameters in practice to contributions
from different layer (interval) parameters based on Dix-type inversions (e.g, Koren
and Ravve, 2006; Ursin and Stovas, 2006; Fomel and Stovas, 2010; Buland et al.,
2011; Tsvankin, 2012; Thomsen, 2014).

Seeking to understand and quantify the first-order effects from lateral heterogene-
ity, Blias (1981) studied the second-order traveltime derivative in a 2-D medium with
curved reflectors and variable velocities based on perturbations from 1-D isotropic
medium. The result was used to analyze the effects of overburden velocity anoma-
lies on stacking velocities (Blias and Gritsenko, 2003; Blias, 2006, 2009b) and led to
a traveltime inversion approach, which honored the effects of lateral heterogeneity
(Blias and Khatchatran, 2003). Several other developments along the same line ex-
ist in the Russian literature (e.g, Blyas et al., 1984; Gritsenko and Chernjak, 2001)
and they were recently reviewed in Russian by Gritsenko (2013). These methods,
however, remain applicable only to the case of multi-layered isotropic media.

Assuming that the slowness (1/velocity) varies slowly in the midpoint direction
and can be approximated as a Taylor series, Lynn and Claerbout (1982) studied the
second-order traveltime derivative in a single horizontal isotropic layer with later-
ally varying velocity. A similar idea was used by Grechka and Tsvankin (1999) on
the group slowness to study the second-order traveltime derivative in one- and two-
layered anisotropic models with laterally varying medium parameters. Takanashi and
Tsvankin (2011) and Takanashi and Tsvankin (2012) extended the results of Grechka
and Tsvankin (1999) to multi-layer anisotropic models with horizontal boundary inter-
faces (except at the target reflector) and proposed a correction algorithm for removing
the effects of embedded velocity anomalies from reflection data. However, the effects
from curved reflectors at intermediate interfaces are not considered in these methods.

Apart from moveout analysis, it is also important to note that there is another
time-domain processing technique whose governing parameters can be related to one-
way traveltime derivatives of some special ray—namely time migration. While move-
out analysis relies on its connection to the one-way traveltime derivatives of the
normal-incidence ray, time migration relies on its connection to the one-way travel-

TCCS

Sripanich et al. 4 Effects of lateral heterogeneity

time derivatives of the image ray (Hubral, 1977). The former denotes the ray that
has zero phase slownesses tangent to the reflector, whereas the latter denotes the
ray the has zero phase slownesses tangent to the recording surface (Figure 1). For
the image ray, the second-order derivative of the one-way (upward) traveltime is re-
lated to time-migration velocity, which serves as the basis for time-domain imaging
(i.e, collecting contributions along the corresponding diffraction traveltime curve) and
also for studying diffraction imaging (Fomel et al., 2007; Reshef and Landa, 2009).
Both normal-incidence and image rays may also coincide in some special cases, for
example, in a horizontal anisotropic layer with horizontal symmetry plane such as a
transversely isotropic medium with vertical symmetry axis (VTI), an orthorhombic
medium (ORT), and a monoclinic medium, where both rays become vertical. We
note that several researchers have previously studied the process of time migration
when underlying velocity models are ‘weakly’ laterally heterogeneous and some devel-
opments were reviewed by Cameron et al. (2007), Schleicher et al. (2007) and Iversen
et al. (2012). However, in this study, we shall present an alternative approach to this
problem based on an integrated use of Fermat’s principle and approximate lateral
hetergogeneity effects.

x0 = (x0, f0 (x0))

x1

xn

.

.

.

w0

wn

w1

wn-1

.

.

.

xn+1 = (xn+1, fn+1 (xn+1))

x0 = (x0, f0 (x0))

x1

xn

.

.

.

w0

wn

w1

wn-1

.

.

.

xn+1 = (xn+1, fn+1 (xn+1))

x1

xn

.

.

.

w0

wn

w1

wn-1

.

.

.

xn+1 = (xn+1, fn+1 (xn+1))

or �

Normal-incidence ray Image ray

Reflection traveltime Diffraction traveltime

Vertical ray

x0 = (x0, f0 (x0)) x0 = (x0, f0 (x0))
Zero phase slowness

tangent to the reflector
Zero phase slowness
tangent to the surface

Figure 1: The ray configuration as the basis for computing the traveltime derivatives.
We use the vertical ray in a 1-D anisotropic medium at the x0 location as the reference
for the normal-incidence ray and the image ray in the cases of reflection and diffraction
traveltimes, respectively.

The fundamental dependency of time-domain processing techniques on the one-
way traveltime derivatives of both the normal-incidence ray and the image ray encour-
ages a thorough study on their behaviors under influences from lateral heterogeneity.
In this paper, we focus on the forward problem and propose a general unified frame-
work for computing one-way traveltime derivatives in the presence of ’weak’ lateral
heterogeneity from both curved interfaces and smoothly variable medium parameters
in a multi-layered anisotropic medium. We rely on the fundamental ideas from Blias
(1981), Lynn and Claerbout (1982), and Blyas et al. (1984) to extend the theory to
work with perturbations from background 1-D anisotropic medium and demonstrate
its connections to existing theories. Particularly, qe show that the effects from lateral
heterogeneity in each anisotropic sublayer can be approximately quantified by the

TCCS

Sripanich et al. 5 Effects of lateral heterogeneity

Taylor expansions of interface surfaces and layer group velocities with respect to the
1-D background. Their cumulative effect along the (normal-incidence or image) ray
path can then be computed using an exact recursion derived from the Fermat’s prin-
ciple instead of an approximate summation previously used. We test our proposed
theory by demonstrating improvements in reflection and diffraction traveltime pre-
dictions. In view of these results, we discuss potential applications of this theoretical
study such as improving Dix inversion to honor the effects from lateral heterogeneity
when inverting for interval parameters.

TRAVELTIME IN GENERAL 2-D LAYERED MEDIA

We consider a 2-D multi-layer model, where the total one-way traveltime from the
fixed source x0 =

(
x0, f0(x0)

)
on the interface f0 to the receiver xn+1 =

(
xn+1, fn+1(xn+1)

)
on the interface fn+1 can be written as

t(x0,xn+1) = t0
(
x0,x1(h)

)
+

n∑
k=1

tk
(
xk(h),xk+1(h)

)
, (1)

where n is the number of interfaces and xk for k = 1, 2, . . . , n denotes the point of
intersection between the ray and the k-th interface (Figure 1). Every intersection
point xk and the receiver xn+1 depend on the distance h = xn+1 − x0, whereas the
source at x0 does not. The two-point traveltime tk in the k-th layer is given by

tk(xk,xk+1) =

∫ xk+1

xk

wk(σk)dσk , (2)

where σ denotes the arc length along the ray between xk and xk+1, and wk denotes
the group slowness (1/group velocity) of the k-th layer that depends on σk. Assuming
that in each layer wk only varies horizontally, equation 2 can be rewritten as

tk(xk,xk+1) =

∫ xk+1

xk

wk(mk)

sin θk(mk)
dmk , (3)

where mk denotes the horizontal coordinate (midpoint direction) and θk is the angle
of the raypath with respect to the vertical. In the following derivation, we assume
that the lateral heterogeneity influences are weak and the resulting traveltime per-
turbations can be computed with respect to a straight raypath in each homogeneous
sublayer. Therefore, we assume that θk is constant for each k-th layer and rewrite
equation 3 as follows (Lynn and Claerbout, 1982; Grechka and Tsvankin, 1999):

tk(xk,xk+1) =

(√
(xk+1 − xk)2 + (fk+1(xk+1)− fk(xk))2

xk+1 − xk

)∫ xk+1

xk

wk(mk)dmk . (4)

Equations 1 and 4 serve as the basis for our construction in this study, where we
seek the following second-order total one-way traveltime derivative,

∂2t

∂h2

∣∣∣∣
h=0

, where h = xn+1 − x0, (5)

TCCS

Sripanich et al. 6 Effects of lateral heterogeneity

evaluated at h = 0 with respect to the reference vertical ray in a 1-D anisotropic
medium (Figure 1). We denote the reference intersection point by X = x0 and
use ‘capital letters’ to denote quantities evaluated with respect to the reference 1-D
anisotropic medium.

In consideration of reflection traveltime, equation 5 is related to the NMO velocity
as follows:

1

V 2
nmo

= T
∂2t

∂h2

∣∣∣∣
h=0

, (6)

where T is the one-way zero-offset traveltime from the point x0 on the reflector to
the surface. In the case of diffraction traveltime, equation 5 can be related to time-
migration velocity as follows:

1

V 2
m

= T̂
∂2t

∂x̂2

∣∣∣∣
x̂=0

, (7)

where T̂ is the one-way vertical traveltime from the point scatterer x0 to the sur-
face and we replace h with x̂ = xn+1 − x0. Even though h and x̂ have the same
mathematical expression, they represent two different quantities. In case of reflection
traveltime, it is common to use h to denote half-offset. On the other hand, in con-
sideration of diffraction traveltime, we use x̂ here to denote the distance between the
escape location x0 of image ray and any surrounding point x on the surface. We give
a brief review on the derivation of equations 6 and 7 in Appendix A.

Because both NMO velocity (equation 6) for reflection traveltime and time-migration
velocity (equation 7) for diffraction traveltime are related to the one-way traveltime
derivative of a ray (either normal-incidence or image ray), it is, in principle, sufficient
to study the effects from lateral heterogeneity on such derivative of a generic ray
travelling between a subsurface position and the surface. We shall adopt this notion
in this paper and begin our study by first looking at how the desired second-order
one-way traveltime derivative evaluated at the surface (equation 5) is related to the
derivatives of tk in each sublayer based on the Fermat’s principle. This relationship
will be used to accumulate the total effects of lateral heterogeneity from all sublayers.

A recursive formula from Fermat’s principle

To understand how the contribution from each sublayer influences the desired second-
order traveltime derivative at the surface, we follow the notion of Blias (1981), Blyas
et al. (1984), Gritsenko (1984), and Goldin (1986) and establish the connections
between the second-order traveltime derivatives evaluated at different interfaces using
the Fermat’s principle, which states that the total traveltime t has to be stationary
with respect to xk for k = 1, 2, . . . , n, leading to

∂t

∂xk

= 0 . (8)

TCCS

Sripanich et al. 7 Effects of lateral heterogeneity

We begin our derivation by first differentiating equation 1 with respect to h, which
gives

∂t

∂h
=

∂tn
∂h

+
n∑

k=1

∂t

∂xk

∂xk

∂h
, (9)

where n is the index for the topmost layer. Due to the Fermat’s condition in equa-
tion 8, we then have

∂t

∂h
=

∂tn
∂h

. (10)

Further differentiating equation 10 with respect to h, we arrive at

∂2t

∂h2
=

∂2tn
∂h2

+
∂2tn
∂h∂xn

dxn

dh
, (11)

which can be used to compute the desired second-order traveltime derivative (∂2t/∂h2).
In Appendix B, we show that by differentiating the Fermat’s condition in equation 8,
the quantity dxn/dh in equation 11 can be computed from the following recursive
formula:

rk =

(
dxk

dh

)/(
dxk+1

dh

)
= −

(
∂2tk

∂xk∂xk+1

)/(
rk−1

∂2tk−1

∂xk−1∂xk

+
∂2(tk−1 + tk)

∂x2
k

)
,

(12)
with k = 1, . . . , n. Note that because h = xn+1 − x0 and x0 is independent of h by
definition, dx0/dh = 0 and dxn+1/dh = 1, which lead to r0 = 0 and rn = dxn/dh.
Equations 11 and 12 suggest that the desired second-order traveltime derivative at
the surface can be computed by collecting the contributions from derivatives on tk
from different sublayers through a recursion. The general results for multi-layer me-
dia in equations 11 and 12 represent a direct extension of the original findings for
two-layer media by Blias (1981), Blyas et al. (1984), Gritsenko (1984), and Goldin
(1986). Previously, only the two-layer version of this recursion was adopted and an
approximate summation of contributions rather than a recursion was used. We review
this proposition in Appendix C and discuss some connections to the exact recursion
studied here.

Equations 11 and 12 represent a framework for computing the desired second-
order total one-way traveltime derivative at the surface (∂2t/∂h2) from second-order
one-way traveltime derivatives corresponding to different sublayers (tk). In the next
section, we introduce lateral heterogeneity effects for interfaces fk and the group
slowness wk to the traveltime in each sublayer tk in equation 4. We subsequently
compute the derivatives on tk that include both effects, which can then be used by
recursion 12.

TAKING HETEROGENEITY INTO ACCOUNT

Finding the layer traveltime derivatives needed by equation 12 is generally straightfor-
ward in the case of 1-D media because both traveltime and offset can be conveniently

TCCS

Sripanich et al. 8 Effects of lateral heterogeneity

expressed as functions of horizontal phase slownesses (Sripanich and Fomel, 2016;
Koren and Ravve, 2017). However, in this study, we modify the layer traveltime tk
(equation 4) by adding the two sources of lateral heterogeneity: non-flat reflectors
and lateral velocity variations.

Non-flat interfaces

To include weak lateral heterogeneity from curved interfaces, we modify equation 4
and consider a Taylor expansion of fk with respect to the reference location X = x0

as follows:

fk(xk) ≈ fk(X) + (xk −X)
∂fk
∂xk

∣∣∣∣
xk=X

+
(xk −X)2

2

∂2fk
∂x2

k

∣∣∣∣
xk=X

, (13)

≈ Fk + (xk −X)F ′
k +

(xk −X)2

2
F ′′
k ,

where Fk denotes the vertical depth of the k-th interface evaluated at the reference
X. F ′

k and F ′′
k are its corresponding first- and second-order derivatives evaluated at

xk = X.

Laterally varying velocity

Following the approach of Lynn and Claerbout (1982) and Grechka and Tsvankin
(1999), we assume that the group slowness in each sublayer only varies laterally and
can also be approximated as a Taylor expansion with respect to the reference location
X = x0 as follows:

wk(mk) ≈ wk(X) + (mk −X)
∂wk

∂mk

∣∣∣∣
mk=X

+
(mk −X)2

2

∂2wk

∂m2
k

∣∣∣∣
mk=X

, (14)

≈ Wk + (mk −X)W ′
k +

(mk −X)2

2
W ′′

k ,

where Wk denotes the group slowness in the k-th layer evaluated at the reference
X. In the case of anisotropic media, equation 14 implies the spatial variation of the
vertical group slowness with respect to the horizontal coordinate mk, which follows
from the choice of vertical reference ray in the reference 1-D anisotropic medium.

LAYER TRAVELTIME DERIVATIVES WITH
HETEROGENEITY

Incorporating the two sources of heterogeneity (equations 13 and 14) into equation 4
and evaluating the integral, we can derive the traveltime tk that includes the het-
erogeneity effects. Twice differentiating the result with respect to xk and xk+1 and

TCCS

Sripanich et al. 9 Effects of lateral heterogeneity

evaluating at the vertical reference (xk = X and h = 0), we arrive at the following
layer traveltime derivatives:

∂2tk−1

∂xk−1∂xk

∣∣∣∣
h=0

=
∂2Tk−1

∂xk−1∂xk

∣∣∣∣
h=0

+H1 , (15)

∂2tk−1

∂x2
k

∣∣∣∣
h=0

=
∂2Tk−1

∂x2
k

∣∣∣∣
h=0

+H2 ,

∂2tk
∂x2

k

∣∣∣∣
h=0

=
∂2Tk

∂x2
k

∣∣∣∣
h=0

+H3 ,

where Tk denotes the traveltime of the k-th layer in the reference 1-D horizontally-
layered anisotropic media with constant elastic parameters within each layer. There-
fore, the terms with Tk derivatives are the usual results ones get under the 1-D medium
assumption. The additional heterogeneous terms (Hi) that combine the effects from
curved interfaces and laterally varying velocity are given by

H1 =
(F ′

k−1 − F ′
k)W

′
k−1

2
+

(Fk−1 − Fk)W
′′
k−1

6
, (16)

H2 = −F ′′
kWk−1 − F ′

kW
′
k−1 +

(Fk−1 − Fk)W
′′
k−1

3
,

H3 = F ′′
kWk + F ′

kW
′
k +

(Fk − Fk+1)W
′′
k

3
.

The expression for ∂2tk
∂xk∂xk+1

is similar to that of ∂2tk−1

∂xk−1∂xk
with shifted indices. If a

single horizontal layer is considered, equation 11 becomes reminiscent of the result by
Grechka and Tsvankin (1999):

∂2t0
∂h2

∣∣∣∣
h=0

=
∂2T0

∂h2

∣∣∣∣
h=0

+
(F0 − F1)W

′′
0

3
,

=
1

T0V 2
nmo

+
(F0 − F1)W

′′
0

3
, (17)

but with the second derivative on group slowness as opposed to group velocity. Vnmo

is the usual normal-moveout velocity in the reference 1-D medium, which translates
to Vm in the case of diffraction traveltime.

NUMERICAL IMPLEMENTATION

Using the proposed recursion 12 and the layer traveltime derivatives in equation 15, we
can summarize the steps to accumulate the effects from lateral heterogeneity along
a raypath and evaluate the corresponding traveltime derivatives at the surface as
follows:

1. Given a multi-layered medium with known F , W , and their derivatives in all
sublayers, we compute the layer traveltime derivatives (equation 15) for a spec-
ified CMP location in the case of reflection traveltime or a specified image-ray

TCCS

Sripanich et al. 10 Effects of lateral heterogeneity

escape location in the case of diffraction traveltime. In particular, equation 15
can be rewritten with evaluated reference 1-D traveltime derivatives as follows:

∂2tk−1

∂xk−1∂xk

∣∣∣∣
h=0

= − 1

Tk−1V 2
nmo,k−1

+H1 , (18)

∂2tk−1

∂x2
k

∣∣∣∣
h=0

=
1

Tk−1V 2
nmo,k−1

+H2 ,

∂2tk
∂x2

k

∣∣∣∣
h=0

=
1

TkV 2
nmo,k

+H3 ,

where Vnmo,k is the NMO velocity of the k-th layer at the specified position. This
velocity is constant for an isotropic sublayer but is equal to VP0

√
1 + 2δ for a

VTI sublayer, where VP0 is the vertical P-wave velocity and δ is the Thomsen’s
delta.

2. We substitute the results from step 1 into the recursion 12 starting from k = 1
with r0 = 0 and end up with rn = dxn/dh.

3. We can evaluate the final second-order traveltime derivative at the surface from
equation 11 with the layer derivatives of the n-th layer and rn from step 2.

4. NMO or time-migration velocity can then be found according to equations 6 and
7 by multiplying the the result from step 3 with the total one-way traveltime
in the reference 1-D medium T =

∑n
k=0 Tk.

NUMERICAL EXAMPLES

Single-layer media

In our first example, we consider a medium with a single horizontal layer and a
constant horizontal velocity gradient according to

v(x) = v0 + gx(x− x0) , (19)

where gx is the horizontal velocity gradient. In this medium, the two-point traveltime
of a ray between the source at (x0,z0) and the receiver at (x,z) can be computed
analytically from

t(x, z) =
1

gx
arccosh

(
1 +

g2x [(x− x0)
2 + (z − z0)

2]

2v(x)v0

)
. (20)

The exact second-order derivative of traveltime can then be found by twice differen-
tiating equation 20 with respect to h = x− x0.

TCCS

Sripanich et al. 11 Effects of lateral heterogeneity

We randomly generate 10,000 models from uniform distributions defined with the
following parameter ranges:

1.6 km/s ≤ v0 ≤ 4.0 km/s , (21)

−0.35 1/s ≤ gx ≤ 0.35 1/s ,

0.0 1/s ≤ gz ≤ 0.2 1/s ,

0.5 km ≤ z0 ≤ 3.0 km .

We compare the performance of equation 17 against the 1-D counterpart, which is
equal to 1

/
T0V

2
nmo = 1

/
T0v

2
0. Figure 2 shows a comparison of histograms for the

relative errors of both methods with respect to the analytical results. We can observe
that the results from the proposed approach (equation 17) as depicted by the orange
histogram has higher peaks at low error levels than that of the overlaid blue histogram
associated with the results from the 1-D approach. In other words, the proposed
approach can lead to a small level of prediction error in a larger proportion of the
generated models. The mean, the standard deviation, and the maximum error from
the proposed approach are 0.37, 0.95 and 4.28 per cent in comparison with 1.89, 3.53
and 12.78 per cent from the usual 1-D computation. These results suggest a better
performance from the proposed approach and corroborate our theoretical findings.

Figure 2: A comparison of error histograms from 10 000 randomly generated models
for the results from 1-D computations (Blue) and those from the proposed method
(Orange) according to equation 17 in the single layer case with both vertical and
horizontal velocity variations. We can observe relatively smaller errors in a larger
proportion of the models from the latter, which corroborate our theoretical findings.

For an additional example, we consider a similar setup with only horizontal ve-
locity gradient (gx = 0), which leads to the 1-D traveltime derivative simply being

TCCS

Sripanich et al. 12 Effects of lateral heterogeneity

1
/
T0V

2
nmo = 1

/
T0v

2
0. The result of this experiment is shown in Figure 3 with the

mean, the standard deviation, and the maximum error from the proposed approach
equal to 0.24, 0.48 and 4.28 per cent in comparison with 1.41, 2.45 and 17.58 per cent
from the usual 1-D computation. An analogous conclusion to the previous case can
be drawn.

Figure 3: A comparison of error histograms from 10 000 randomly generated models
for the results from 1-D computations (Blue) and those from the proposed method
(Orange) according to equation 17 in the single layer case with only horizontal velocity
variation. We can observe relatively smaller errors in a larger proportion of the models
from the latter, which corroborate our theoretical findings.

Reflection traveltime in multilayer media

Next, we consider multi-layered media, where the accumulation of lateral heterogene-
ity effects with the recursion (equation 12) plays a role. We first look at the case
of reflection traveltime and apply the proposed framework to compute the effective
NMO velocity that honors the effects from lateral heterogeneity. We follow the steps
as described previously in the numerical implementation section. In the first two
synthetic examples below, we benchmark our results against synthetic seismograms
from Kirchhoff modeling using an accurate two-point ray bending scheme (Sripanich
and Fomel, 2014). For the last example, we use the Hess VTI model and its common-
midpoint (CMP) gather to demonstrate the applicability of the proposed method.

TCCS

Sripanich et al. 13 Effects of lateral heterogeneity

Layered anisotropic model

We consider first a layered anisotropic model in Figure 4 with parameters shown in
Table 1. The model contains both a synclinal structure and a variable dipping layer
that can lead to noticeable effects from lateral heterogeneity. Each layer in this model
is homogeneous, hence only the effects from curved interfaces (derivatives of F) are
important. We note that the depths of the top three reflectors are smaller than 2 km,
which is the spread length of offset in this experiment. Therefore, the offset-to-depth
ratio is greater than unity and additional effects of moveout nonhyperbolicity caused
by anisotropy are important (Tsvankin, 2012). As a result, possible improvement from
modifying the NMO velocity proposed under the hyperbolic traveltime assumption
in this study may not be as prominent for these three reflectors.

Figure 4: A test subsurface model with a synclinal structure and a variable dipping
interface. The solid black line indicates the location of the extracted CMP gather.

Anisotropic parameters c11 c33 c13 c55 Q1 Q3 vP0 vS0 ϵ δ
Layer 1 9.0 9.0 3.0 3.0 1.0 1.0 3.0 1.732 0.0 0.0
Layer 2 12.72 10.23 5.55 2.57 1.13 1.14 3.20 1.60 0.121 0.046
Layer 3 14.47 9.57 4.51 2.28 1.58 1.68 3.09 1.51 0.256 -0.050
Layer 4 13.0 13.0 5.0 4.0 1.0 1.0 3.61 2.0 0.0 0.0
Layer 5 22.05 14.89 5.34 4.93 1.34 1.423 3.86 2.22 0.240 0.012

Table 1: Anisotropic parameters for the model in Figure 4. The values for layer 2, 4,
and 5 are taken from rock samples measurements by Wang (2002), Jones and Wang
(1981), and Vernik and Liu (1997), respectively. Q1 and Q3 are anelliptic parameters
in the Muir-Dellinger scheme convenient for uses in group velocity approximations
(Sripanich and Fomel, 2015).

Figure 5 shows the CMP gather at 4.3 km that compares moveout approximations
with NMO velocity computed based on the 1-D stratified medium assumption and

TCCS

from rsf.proj import *
from math import *

#2D Example--
xmax = 6.0
zmax = 3.0

Forel
#layers = ((0.00,0.00,0.00,0.00,0.00),
#	 	(0.30,0.50,0.375,0.20,0.30),
(0.55,0.75,0.6,0.45,0.55),
(0.65,0.85,0.7,0.55,0.65),
#	 	(1.30,1.30,1.45,1.60,1.20),
#	 	(2.0,2.0,2.0,2.0,2.0))
	 	
layers = ((0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),
	 	(0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3),
 (0.5,0.5,0.5,0.5,0.65,0.9,0.65,0.5),
 (0.85,0.85,0.85,0.95,1.2,1.3,1.3,1.3),
	 	(1.55,1.55,1.55,1.55,1.55,1.55,1.55,1.55),
	 	(2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0))
	 	
#	 	layers = ((0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),
#	 	(0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3),
(0.5,0.5,0.5,0.5,0.65,1.0,0.65,0.5),
(1.0,1.1,1.5,1.5,1.1,1.2,1.1,1.1),
#	 	(1.75,1.75,1.75,1.75,1.75,1.55,1.55,1.55),
#	 	(2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0))
Flat
#layers = ((0.00,0.00,0.00,0.00,0.00),
#	 	(0.375,0.375,0.375,0.375,0.375),
(0.6,0.6,0.6,0.6,0.6),
(0.7,0.7,0.7,0.7,0.7),
#	 	(1.45,1.45,1.45,1.45,1.45),
#	 	(2.0,2.0,2.0,2.0,2.0))
flatlayers = ((0.00,0.00,0.00,0.00,0.00),
	 	(1.0,1.0,1.0,1.0,1.0),
 (2.0,2.0,2.0,2.0,2.0),
 (3.0,3.0,3.0,3.0,3.0),
	 	(4.0,4.0,4.0,4.0,4.0),
	 	(5.0,5.0,5.0,5.0,5.0))

def arr2str(array,sep=' '):
 return sep.join(map(str,array))

n1 = len(layers[0])
n2 = len(layers)

Flow('layers.asc',None,
 '''
	echo %s
 n1=%d n2=%d o1=0 d1=%g
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(arr2str,layers)),
 n1,n2,xmax/(n1-1)))
Flow('layers','layers.asc','dd form=native')

d = 0.0101 # non-round for reproducibility

Flow('refl1','layers',''' window n2=1 f2=0| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl2','layers',''' window n2=1 f2=1| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl3','layers',''' window n2=1 f2=2| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl4','layers',''' window n2=1 f2=3| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl5','layers',''' window n2=1 f2=4| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl6','layers',''' window n2=1 f2=5| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))

Flow('ref','refl1 refl2 refl3 refl4 refl5 refl6', '''cat axis=2 ${SOURCES[1:6]} | math output="input*3/2" ''')
Plot('ref','''graph yreverse=y wanttitle=n label1=Distance unit1=km plotfat=6
 label2=Depth unit2=km min2=0 max2=3 min1=0 max1=6
					 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
					 axisfat=3 titlefat=3 titlesz=6 labelfat=1 labelsz=4''')

Flow('flat.asc',None,
 '''
	echo %s
 n1=%d n2=%d o1=0 d1=%g
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(arr2str,flatlayers)),
 n1,n2,xmax/(n1-1)))
Flow('flats','flat.asc','dd form=native')

Flow('reflf1','flats',''' window n2=1 f2=0| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf2','flats',''' window n2=1 f2=1| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf3','flats',''' window n2=1 f2=2| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf4','flats',''' window n2=1 f2=3| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf5','flats',''' window n2=1 f2=4| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf6','flats',''' window n2=1 f2=5| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))

Flow('reff','reflf1 reflf2 reflf3 reflf4 reflf5 reflf6', '''cat axis=2 ${SOURCES[1:6]}''')

#anisotropy (Q must not equal to 1 in the case of anisotropy)
c11,c33, Q1, Q3

aniso = ((9.0,9.01,1.0001,1.001), # constant velocity 3 km/s
 (12.716,10.233,1.128,1.137), # Africa shale
 (13.0,13.01,1.0001,1.001), #constant velocity sqrt(13) km/s
 (14.47,9.57,1.58,1.68), # Greenhorn Jones & Wang
	 	 (22.05,14.89,1.344,1.423)) # North sea Vernik & Liu

n3 = len(aniso[0])
n4 = len(aniso)

Flow('aniso.asc',None,
 '''
	echo %s
 n1=%d n2=%d o1=0 d1=1
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(arr2str,aniso)),
 n3,n4))
Flow('aniso','aniso.asc','dd form=native')

Model specifications
updown=[1,2]
N = len(updown)-1
vstat = 2
gx = [0.0,0.0,0.0,0.0,0.0]
gz = [0.0,0.0,0.0,0.0,0.0]
v = [1,1,1,1,1]
vcol = [1.508,1.581,1.69,1.826,2,2.2]
xref = [0.1,0.1,0.1,0.1,0.1]
zref = [0.2,0.45,0.6,1.2,1.5]

xrefstr = ','.join(map(str,xref)) # convert xref to a string
zrefstr = ','.join(map(str,zref)) # convert zref to a string
gxstr = ','.join(map(str,gx)) # convert gx to a string
gzstr = ','.join(map(str,gz)) # convert gz to a string
updownstr = ','.join(map(str,updown)) # convert updown to a string
vstr = ','.join(map(str,v)) # convert v to a string
vcolstr = ','.join(map(str,vcol)) # convert vcol to a string

Flow('xrefl','ref aniso',
	'''isaac2 niter=500 number=%d vstatus=%d debug=n xs=2.3 xr=4.3 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s tol=0.0001 aniso=${SOURCES[1]}''' % (N,vstat,vstr,updownstr,xrefstr,zrefstr,gxstr,gzstr))
Plot('xrefl',
	 '''
	 dd type=complex | window |
	 graph wanttitle=n wantaxis=n yreverse=y min2=0 max2=3 min1=0 max1=6 plotcol=7 plotfat=6 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
	 axisfat=3 titlefat=3 titlesz=6 labelfat=1 labelsz=4
	 ''')
Plot('xrefl-points','xrefl',
	 '''
	 dd type=complex | window |
	 graph wanttitle=n wantaxis=n yreverse=y min2=0 max2=3 min1=0 max1=6 plotcol=7 plotfat=6 symbol=* symbolsz=10 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5 axisfat=3 titlefat=3 titlesz=6 labelfat=1 labelsz=4
	 ''')
Result('v','xrefl xrefl-points ref','Overlay')# Plot of 2D ray

Plot of model 1
Flow('mod1','ref',
 '''
 window n2=5 f2=1 |
 unif2 d1=%g n1=%d v00=%s
 ''' % (d,int(1.5+zmax/d),vstr))

Flow('modcol','ref',
 '''
 window n2=5 f2=1 |
 unif2 d1=%g n1=%d v00=%s
 ''' % (d,int(1.5+zmax/d),vcolstr))

Result('mod1',
 '''
 grey color=j
 screenratio=%g screenht=4 wanttitle=n
 mean=y labelfat=1 labelsz=4
 label1="Depth (km)"
 label2="Distance (km)"
 ''' % (zmax/xmax))

Flow('lineshot','modcol','window n2=1 f2=426 | math output=x1')
Flow('lineshotc','lineshot','math output="426*0.0101" | cat axis=2 $SOURCE | transp | dd type=complex | window ')
Plot('lineshotc','graph screenratio=%g yreverse=y screenht=4 min1=0 max1=6 wanttitle=n wantaxis=n plotfat=4 plotcol=7' % (zmax/xmax))
Plot('modcol',
 '''
 grey color=j
 screenratio=%g screenht=4 wanttitle=n
 mean=y labelfat=2 labelsz=4
 label1="Depth (km)"
 label2="Distance (km)"
 ''' % (zmax/xmax))
Result('modcol','modcol lineshotc','Overlay')

v1 = 3
v2 = 3.2
v3 = 3.6
v4 = 3.1
v5 = 3.86

vnmo1 = sqrt(v1*v1)
vnmo2 = sqrt(12.716/1.137)
vnmo3 = sqrt(v3*v3)
vnmo4 = sqrt(14.47/1.68)
vnmo5 = sqrt(22.05/1.423)

vver = (v1,v2,v3,v4,v5)
Flow('vver.asc',None,
 '''
	echo %s
 n1=%d o1=0 d1=1
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(str,vver)),5))
Flow('vver','vver.asc','dd form=native')

vnmo = (vnmo1,vnmo2,vnmo3,vnmo4,vnmo5)
Flow('vnmo.asc',None,
 '''
	echo %s
 n1=%d o1=0 d1=1
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(str,vnmo)),5))
Flow('vnmo','vnmo.asc','dd form=native')

Flow('velocityver','vver','spray d=%f n=%d | transp' % (d,int(1.5+xmax/d)))
Flow('velocitynmo','vnmo','spray d=%f n=%d | transp' % (d,int(1.5+xmax/d)))

Forel
Flow('refs','ref','window n2=5 f2=1 | put o2=0')
Flow('dips','refs','deriv scale=y')

Modified Baina
#Flow('refs','lays','window n2=5 f2=1 | put o2=0')
#Flow('dips','refs','deriv scale=y')

Kirchhoff modeling examples##
Flow('shotcmp','refs dips aniso',
 '''
 kirmod_newton nt=751 dt=0.004 freq=15 cmp=y
 ns=61 s0=0.0 ds=0.1 nh=101 dh=0.04 h0=-2 verb=y
 vstatus=%d debug=n fwdxini=n niter=100
 xref=0 zref=0 dip=${SOURCES[1]} aniso=${SOURCES[2]}
 ''' %vstat)

Flow('shotcmp15','shotcmp','window n3=1 f3=15')
Flow('shotcmp30','shotcmp','window n3=1 f3=30')
Flow('shotcmp45','shotcmp','window n3=1 f3=45')
Plot('shotcmp15',
 '''
 grey transp=y yreverse=y poly=y
 title="CMP at 1.5 km" max1=2 label2=Offset unit2=km screenratio=0.75
 axisfat=3 titlefat=3 titlesz=18 labelfat=3 labelsz=14
 wherexlabel=top
 ''')
Plot('shotcmp30',
 '''
 grey transp=y yreverse=y poly=y
 title="CMP at 3 km" max1=2 label2=Offset unit2=km screenratio=0.75
 axisfat=3 titlefat=3 titlesz=18 labelfat=3 labelsz=14
 wherexlabel=top
 ''')
Plot('shotcmp45',
 '''
 grey transp=y yreverse=y poly=y
 title="CMP at 4.5 km" max1=2 label2=Offset unit2=km screenratio=0.75
 axisfat=3 titlefat=3 titlesz=18 labelfat=3 labelsz=14
 wherexlabel=top
 ''')

NMO velocity for the model
Compute depth
Flow('depth','ref refs','window n2=5 | math s=${SOURCES[1]} output="s-input" | put o2=0')
Flow('t0','depth velocityver','math v=${SOURCES[1]} output="input/v"')
Flow('v2t0','t0 velocitynmo','math v=${SOURCES[1]} output="input*v^2" ')

Flow('t0sum','t0','transp | causint | transp')
Flow('t0sumext','t0sum','spray axis=3 n=101 d=0.04 o=-2')
Flow('vnmosq','v2t0 t0sum','transp | causint | transp | math t0=${SOURCES[1]} output="input/t0" ')
Flow('vnmosqext','vnmosq','spray axis=3 n=101 d=0.04 o=-2')
Flow('hypertime','vnmosqext t0sumext','math t0=${SOURCES[1]} output="sqrt(4*t0^2 + x3^2/input)"')

Flow('offset',None,'spike n1=101 d1=0.04 o1=-2 | math output=x1')

Taking into account heterogeneities

Flow('slow','velocityver',' math output="1/input" ')
Flow('vnmosqbylayer','velocitynmo',' math output="input^2" ')

Flow('vnmosqhet','refs vnmosqbylayer slow t0sum',
	'''
	fermatrecursion vnmosq=${SOURCES[1]} slow=${SOURCES[2]} t0sum=${SOURCES[3]}
	''')
Flow('vnmosqhetext','vnmosqhet','spray axis=3 n=101 d=0.04 o=-2')
Flow('hyperhettime','vnmosqhetext t0sumext','math t0=${SOURCES[1]} output="sqrt(4*t0^2 + x3^2/input)"')

Plotting comparison
s1=200
s2=426
s3=435

for j in [s1,s2,s3]:
	if j == s1:
		sh = 1
	elif j == s2:
		sh = 2
	elif j == s3:
		sh = 3
	shot = str(sh)
	for i in range(5):
		num = str(i+1)
		Flow('shotcmp'+shot,'shotcmp',' window n3=1 f3=%d ' %floor(j*0.1))
		Plot('shotcmp'+shot,
		 '''
		 grey transp=y yreverse=y poly=y
		 title="CMP at %s km" max1=2 label2=Offset unit2=km screenratio=1.15
		 axisfat=3 titlefat=3 titlesz=8 labelfat=3 labelsz=6
		 wherexlabel=top
		 ''' % (str(j*0.0101)))
		Plot('hyperto'+num+'-'+shot,'hypertime offset',
			'''
			window n1=1 f1=%d n2=1 f2=%d | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
			graph yreverse=y plotcol=%d plotfat=4 min2=0 max2=2 screenratio=1.15
			axisfat=3 wanttitle=n wantaxis=n
			''' % (j,i,i+1))
		Plot('hyperhetto'+num+'-'+shot,'hyperhettime offset',
			'''
			window n1=1 f1=%d n2=1 f2=%d | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
			graph yreverse=y plotcol=%d plotfat=4 min2=0 max2=2 screenratio=1.15 dash=1
			axisfat=3 wanttitle=n wantaxis=n
			''' % (j,i,i+1))

Plot('box',None,'box font=2 x0=4.8 y0=8.6 label="Anisotropic" xt=0.000000 yt=0.000000')
Plot('hypercompare1',	''' shotcmp1 hyperto1-1 hyperto2-1 hyperto3-1 hyperto4-1 hyperto5-1
							hyperhetto1-1 hyperhetto2-1 hyperhetto3-1 hyperhetto4-1 hyperhetto5-1
						''','Overlay')
Result('hypercompareaniso2',	''' shotcmp2 hyperto1-2 hyperto2-2 hyperto3-2 hyperto4-2 hyperto5-2
							hyperhetto1-2 hyperhetto2-2 hyperhetto3-2 hyperhetto4-2 hyperhetto5-2 box
						''','Overlay')
Plot('hypercompare3',	''' shotcmp3 hyperto1-3 hyperto2-3 hyperto3-3 hyperto4-3 hyperto5-3
							hyperhetto1-3 hyperhetto2-3 hyperhetto3-3 hyperhetto4-3 hyperhetto5-3
						''','Overlay')

#Result('hypercompare','hypercompare1 hypercompare2 hypercompare3','SideBySideAniso')

Plotting flatness comparison
For last reflectors
for j in [s1,s2,s3]:
	if j == s1:
		sh = 1
	elif j == s2:
		sh = 2
	elif j == s3:
		sh = 3
	shot = str(sh)
	Flow('hypertimeshift'+shot,'vnmosqext t0sumext',
		''' math t0=${SOURCES[1]} output="sqrt(4*t0^2 + x3^2/input) - 2*t0"|
		window n1=1 f1=%d n2=1 f2=4
		''' % j)
	Flow('hyperhettimeshift'+shot,'vnmosqhetext t0sumext',
		''' math t0=${SOURCES[1]} output="sqrt(4*t0^2 + x3^2/input) - 2*t0"|
		window n1=1 f1=%d n2=1 f2=4
		''' % j)
	Flow('warped'+shot,'shotcmp'+shot+' hypertimeshift'+shot,'datstretch datum=${SOURCES[1]}')
	Flow('warpedhet'+shot,'shotcmp'+shot+' hyperhettimeshift'+shot,'datstretch datum=${SOURCES[1]}')
	Plot('warped'+shot,
	 '''
	 grey transp=y yreverse=y poly=y
	 title="Corrected CMP at %s km (1D)" min1=1.65 max1=1.95 label2=Offset unit2=km screenratio=0.5
	 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
	 wherexlabel=top
	 ''' % str(j*0.0101))
	Plot('warpedhet'+shot,
	 '''
	 grey transp=y yreverse=y poly=y
	 title="Corrected CMP at %s km (Proposed)" min1=1.65 max1=1.95 label2=Offset unit2=km screenratio=0.5
	 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
	 wherexlabel=top
	 ''' % str(j*0.0101))
	Plot('t0to-'+shot,'t0sumext offset',
		'''
		window n1=1 f1=%d n2=1 f2=4 | scale dscale=2 | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
		graph yreverse=y plotcol=5 plotfat=16 min2=1.65 max2=1.95 screenratio=0.5 dash=1
		axisfat=3 wanttitle=n wantaxis=n
		''' % j)
	Plot('warpedn'+shot,'warped'+shot+' t0to-'+shot,'Overlay')
	Plot('warpedhetn'+shot,'warpedhet'+shot+' t0to-'+shot,'Overlay')
	
Result('warpedcompareaniso2','warpedn2 warpedhetn2','TwoRows')

Velocity scan and picked
#Flow('vscan','shotcmp',' window max1=1.5 | vscan semblance=y v0=2.5 nb=10 dv=0.02 nv=101 half=n')
#Flow('pick','vscan','pick rect1=30 rect2=10 vel0=3 gate=10 an=3')

#Plot('vscan1','vscan',
#	'''
#	window n3=1 f3=30 |
#	grey transp=y yreverse=y color=j allpos=y
#	title="Semblance" max1=1.5 label2=Offset unit2=km screenratio=1.5
#	axisfat=3 titlefat=3 titlesz=14 labelfat=1 labelsz=10
#	wherexlabel=top
#	''')
#Plot('pick1','pick',
#	'''
#	window n2=1 f2=30 |
#	graph transp=y yreverse=y plotcol=0 plotfat=10 min1=0 max1=1.5 min2=2.5 max2=4.5 screenratio=1.5
#	wanttitle=n wantaxis=n
#	''')
#Result('pickcmp1','vscan1 pick1','Overlay')

NMO
#Flow('nmo','shotcmp pick','nmo half=n velocity=${SOURCES[1]}')

#Result('pick',
#	'''	
grey color=j bias=3.375 maxval=4 minval=2.75 clip=0.625
screenratio=%g screenht=4 title="Picked velocity"
labelfat=1 labelsz=4 wherexlabel=top scalebar=y barlabel="Stacking velocity (km/s)"
label1="Time"
label2="Distance (km)"
''' % (zmax/xmax))

RMS velocity for stratified medium
Create a dense model
#Flow('tlayer1',None,'spike n1=61 d1=0.1 o1=0 mag=%g' %t0to1)
#Flow('tlayer2',None,'spike n1=61 d1=0.1 o1=0 mag=%g' %t0to2)
#Flow('tlayer3',None,'spike n1=61 d1=0.1 o1=0 mag=%g' %t0to3)
#Flow('tlayer4',None,'spike n1=61 d1=0.1 o1=0 mag=%g' %t0to4)
#Flow('tlayer5',None,'spike n1=61 d1=0.1 o1=0 mag=%g' %t0to5)

#Flow('tlayer','tlayer1 tlayer2 tlayer3 tlayer4 tlayer5', '''cat axis=2 ${SOURCES[1:5]}''')

#Flow('rms','tlayer',
'''
unif2 d1=0.004 n1=376 o1=0.0 v00=%g,%g,%g,%g,%g |
math output="sqrt(input)"
''' % (vnmoto1,vnmoto2,vnmoto3,vnmoto4,vnmoto5))

#Result('rms',
#	'''	
grey color=j bias=3.375 maxval=4 minval=2.75 clip=0.625
screenratio=%g screenht=4 title="RMS velocity"
labelfat=1 labelsz=4 wherexlabel=top scalebar=y barlabel="RMS velocity (km/s)"
label1="Time"
label2="Distance (km)"
''' % (zmax/xmax))

End()

Sripanich et al. 14 Effects of lateral heterogeneity

from the proposed formula (equation 11). For the bottom two reflectors with the
offset-to-depth ratio smaller than unity, we can observe a better performance from
the latter with improved flatness of the corrected gather.

(a) (b)

Figure 5: (a) An example CMP gather from the layered anisotropic model at 4.3
km. Note the multiple reflection events above the second moveout curve that are
caused by the syncline. The solid lines correspond to regular moveout predic-
tions based on the assumption of 1-D stratified model, whereas the dashed lines
correspond to those from the proposed framework that takes into account the ef-
fects from heterogeneity. (b) Flattened reflections from the bottom interface using
the NMO velocity with 1-D assumption (top) and the proposed framework (bot-
tom). We can clearly observe improved flatness from using the proposed framework.

Layered isotropic model with velocity gradient

Next, we test the proposed framework in a layered isotropic model with a constant
horizontal velocity gradient in each sublayer (equation 19). The model structure
is similar to the previous case (Figure 4) and the model parameters are given in
Table 2. In this example, both effects from the curved reflectors (derivatives of F)
and the laterally varying slowness (derivatives of W) are important. Figure 6 shows
the CMP gather at 4.3 km that compares the predicted moveout curves based on
the 1-D assumption with those from the proposed framework that honor the effects
of heterogeneity. We can again observe an improved flatness of moveout-corrected
gather from the latter.

TCCS

Sripanich et al. 15 Effects of lateral heterogeneity

(a) (b)

Figure 6: (a) An example CMP gather from the layered isotropic model at 4.3
km. Note the multiple reflection events above the second moveout curve that are
caused by the syncline. The solid lines correspond to regular moveout predic-
tions based on the assumption of 1-D stratified model, whereas the dashed lines
correspond to those from the proposed framework that takes into account the ef-
fects from heterogeneity. (b) Flattened reflections from the bottom interface using
the NMO velocity with 1-D assumption (top) and the proposed framework (bot-
tom). We can clearly observed improved flatness from using the proposed framework.

v (km/s) Gradient (1/s)
Layer 1 2.50 -0.06
Layer 2 3.20 0.15
Layer 3 3.40 0.20
Layer 4 3.70 0.30
Layer 5 3.86 0.35

Table 2: Model parameters for the layered isotropic model. The reference velocity at
3 km and horizontal velocity gradient.

TCCS

from rsf.proj import *
from math import *

#2D Example--
xmax = 6.0
zmax = 3.0

Forel
#layers = ((0.00,0.00,0.00,0.00,0.00),
#	 	(0.30,0.50,0.375,0.20,0.30),
(0.55,0.75,0.6,0.45,0.55),
(0.65,0.85,0.7,0.55,0.65),
#	 	(1.30,1.30,1.45,1.60,1.20),
#	 	(2.0,2.0,2.0,2.0,2.0))
layers = ((0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),
	 	(0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3),
 (0.5,0.5,0.5,0.5,0.65,0.9,0.65,0.5),
 (0.85,0.85,0.85,0.95,1.2,1.3,1.3,1.3),
	 	(1.55,1.55,1.55,1.55,1.55,1.55,1.55,1.55),
	 	(2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0))
	 	
Flat
#flatlayers = ((0.00,0.00,0.00,0.00,0.00),
#	 	(0.375,0.375,0.375,0.375,0.375),
(0.6,0.6,0.6,0.6,0.6),
(0.7,0.7,0.7,0.7,0.7),
#	 	(1.45,1.45,1.45,1.45,1.45),
#	 	(2.0,2.0,2.0,2.0,2.0))
flatlayers = ((0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),
	 	(1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0),
 (2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0),
 (3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0),
	 	(4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0),
	 	(5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0))

def arr2str(array,sep=' '):
 return sep.join(map(str,array))

n1 = len(layers[0])
n2 = len(layers)

Generate reflectors
Flow('layers.asc',None,
 '''
	echo %s
 n1=%d n2=%d o1=0 d1=%g
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(arr2str,layers)),
 n1,n2,xmax/(n1-1)))
Flow('layers','layers.asc','dd form=native')

d = 0.0101 # non-round for reproducibility

Flow('refl1','layers',''' window n2=1 f2=0| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl2','layers',''' window n2=1 f2=1| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl3','layers',''' window n2=1 f2=2| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl4','layers',''' window n2=1 f2=3| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl5','layers',''' window n2=1 f2=4| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl6','layers',''' window n2=1 f2=5| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))

Flow('ref','refl1 refl2 refl3 refl4 refl5 refl6', '''cat axis=2 ${SOURCES[1:6]} | math output="input*3/2"''')

Plot('ref','''graph yreverse=y wanttitle=n label1=Distance unit1=km plotfat=6
 label2=Depth unit2=km min2=0 max2=3 min1=0 max1=6
					 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
					 axisfat=3 titlefat=3 titlesz=10 labelfat=3 labelsz=6''')

Flow('flat.asc',None,
 '''
	echo %s
 n1=%d n2=%d o1=0 d1=%g
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(arr2str,flatlayers)),
 n1,n2,xmax/(n1-1)))
Flow('flats','flat.asc','dd form=native')

Flow('reflf1','flats',''' window n2=1 f2=0| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf2','flats',''' window n2=1 f2=1| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf3','flats',''' window n2=1 f2=2| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf4','flats',''' window n2=1 f2=3| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf5','flats',''' window n2=1 f2=4| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf6','flats',''' window n2=1 f2=5| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))

Flow('reff','reflf1 reflf2 reflf3 reflf4 reflf5 reflf6', '''cat axis=2 ${SOURCES[1:6]} ''')

Model specifications
v1 = 2.5
v2 = 3.2
v3 = 3.4
v4 = 3.7
v5 = 3.86

updown=[1,2,3,4,5,4,3,2,1,0]
N = len(updown)-1
vstat = 1 # velocity gradient
gx = [-0.06,0.15,0.2,0.3,0.35]
gz = [0.0,0.0,0.0,0.0,0.0]
v = [v1,v2,v3,v4,v5]
vcol = [1.508,1.581,1.69,1.826,2,2.2]
xref = [3.0,3.0,3.0,3.0,3.0]
zref = [0.0,0.375,0.6,0.7,1.45]

xrefstr = ','.join(map(str,xref)) # convert xref to a string
zrefstr = ','.join(map(str,zref)) # convert zref to a string
gxstr = ','.join(map(str,gx)) # convert gx to a string
gzstr = ','.join(map(str,gz)) # convert gz to a string
updownstr = ','.join(map(str,updown)) # convert updown to a string
vstr = ','.join(map(str,v)) # convert v to a string
vcolstr = ','.join(map(str,vcol)) # convert vcol to a string

Flow('refcut','ref','window n2=6 | put o2=0')
Flow('xrefl','refcut',
	'''isaac2 niter=500 number=%d vstatus=%d debug=n xs=2 xr=4 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s tol=0.0001''' % (N,vstat,vstr,updownstr,xrefstr,zrefstr,gxstr,gzstr))
Plot('xrefl',
	 '''
	 dd type=complex | window |
	 graph wanttitle=n wantaxis=n yreverse=y min2=0 max2=3 min1=0 max1=6 plotcol=7 plotfat=6 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
	 axisfat=3 titlefat=3 titlesz=10 labelfat=3 labelsz=6
	 ''')
Plot('xrefl-points','xrefl',
	 '''
	 dd type=complex | window |
	 graph wanttitle=n wantaxis=n yreverse=y min2=0 max2=3 min1=0 max1=6 plotcol=7 plotfat=6 symbol=* symbolsz=10 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
	 axisfat=3 titlefat=3 titlesz=10 labelfat=3 labelsz=6
	 ''')
Result('v','xrefl xrefl-points ref','Overlay')# Plot of 2D ray

Plot of model 1
Flow('mod1','ref',
 '''
 window n2=5 f2=1 |
 unif2 d1=%g n1=%d v00=%s dvdx=%s x0=%s
 ''' % (d,int(1.5+zmax/d),vstr,gxstr,xrefstr))
''' % (d,int(1.5+zmax/d),vstr+',0.0',gxstr+',0.0',xrefstr+',0.0'))

Flow('modcol','ref',
 '''
 window n2=5 f2=1 |
 unif2 d1=%g n1=%d v00=%s
 ''' % (d,int(1.5+zmax/d),vcolstr))

Flow('velocity','reff',
 '''
 window n2=5 f2=1 |
 unif2 d1=%g n1=%d v00=%s dvdx=%s x0=%s |
 transp
 ''' % (1,5,vstr,gxstr,xrefstr))

Result('mod1',
 '''
 grey color=j
 screenratio=%g screenht=4 wanttitle=n
 labelfat=3 labelsz=6 scalebar=y
 maxval=5.2 minval=2.2 allpos=y bias=2.2 clip=3
 label1="Depth (km)"
 label2="Distance (km)"
 barlabel="Velocity (km/s)"
 ''' % (zmax/xmax))

Flow('lineshot','modcol','window n2=1 f2=426 | math output=x1')
Flow('lineshotc','lineshot','math output="426*0.0101" | cat axis=2 $SOURCE | transp | dd type=complex | window ')
Plot('lineshotc','graph screenratio=%g yreverse=y screenht=4 min1=0 max1=6 wanttitle=n wantaxis=n plotfat=4 plotcol=7' % (zmax/xmax))
Plot('modcol',
 '''
 grey color=j
 screenratio=%g screenht=4 wanttitle=n
 mean=y labelfat=2 labelsz=4
 label1="Depth (km)"
 label2="Distance (km)"
 ''' % (zmax/xmax))
Result('modcol','modcol lineshotc','Overlay')

Flow('refs','ref','window n2=5 f2=1 | put o2=0')
Flow('dips','refs','deriv scale=y')

Kirchhoff modeling
shotscmp = (2.5,3.0,3.5)
plotscmp = []

Flow('shotcmp','refs dips',
 '''
 kirmod_newton nt=751 dt=0.004 freq=15 cmp=y
 ns=61 s0=0.0 ds=0.1 nh=101 dh=0.04 h0=-2 verb=y
 debug=n fwdxini=y
 vstatus=%d velocity=%s debug=n
 xref=%s zref=%s xgradient=%s zgradient=%s dip=${SOURCES[1]}
 ''' %(vstat,vstr,xrefstr,zrefstr,gxstr,gzstr))

Flow('shotcmp15','shotcmp','window n3=1 f3=15')
Flow('shotcmp30','shotcmp','window n3=1 f3=30')
Flow('shotcmp45','shotcmp','window n3=1 f3=45')
Plot('shotcmp15',
 '''
 grey transp=y yreverse=y poly=y
 title="CMP at 1.5 km" max1=1.5 label2=Offset unit2=km screenratio=0.75
 axisfat=3 titlefat=3 titlesz=18 labelfat=3 labelsz=14
 wherexlabel=top
 ''')
Plot('shotcmp30',
 '''
 grey transp=y yreverse=y poly=y
 title="CMP at 3 km" max1=1.5 label2=Offset unit2=km screenratio=0.75
 axisfat=3 titlefat=3 titlesz=18 labelfat=3 labelsz=14
 wherexlabel=top
 ''')
Plot('shotcmp45',
 '''
 grey transp=y yreverse=y poly=y
 title="CMP at 4.5 km" max1=1.5 label2=Offset unit2=km screenratio=0.75
 axisfat=3 titlefat=3 titlesz=18 labelfat=3 labelsz=14
 wherexlabel=top
 ''')

NMO velocity for the model
Compute depth
Flow('depth','ref refs','window n2=5 | math s=${SOURCES[1]} output="s-input" | put o2=0')
Flow('t0','depth velocity','math v=${SOURCES[1]} output="input/v"')
Flow('v2t0','t0 velocity','math v=${SOURCES[1]} output="input*v^2" ')

Flow('t0sum','t0','transp | causint | transp')
Flow('t0sumext','t0sum','spray axis=3 n=101 d=0.04 o=-2')
Flow('vnmosq','v2t0 t0sum','transp | causint | transp | math t0=${SOURCES[1]} output="input/t0" ')
Flow('vnmosqext','vnmosq','spray axis=3 n=101 d=0.04 o=-2')
Flow('hypertime','vnmosqext t0sumext','math t0=${SOURCES[1]} output="sqrt(4*t0^2 + x3^2/input)"')

Flow('offset',None,'spike n1=101 d1=0.04 o1=-2 | math output=x1')

Taking into account heterogeneities

Flow('slow','velocity',' math output="1/input" ')
Flow('vnmosqbylayer','velocity',' math output="input^2" ')

Flow('vnmosqhet','refs vnmosqbylayer slow t0sum',
	'''
	sffermatrecursion vnmosq=${SOURCES[1]} slow=${SOURCES[2]} t0sum=${SOURCES[3]}
	''')
Flow('vnmosqhetext','vnmosqhet','spray axis=3 n=101 d=0.04 o=-2')
Flow('hyperhettime','vnmosqhetext t0sumext','math t0=${SOURCES[1]} output="sqrt(4*t0^2 + x3^2/input)"')

Plotting comparison
s1=390
s2=426
s3=530

for j in [s1,s2,s3]:
	if j == s1:
		sh = 1
	elif j == s2:
		sh = 2
	elif j == s3:
		sh = 3
	shot = str(sh)
	for i in range(5):
		num = str(i+1)
		Flow('shotcmp'+shot,'shotcmp','window n3=1 f3=%d ' %floor(j*0.1))
		Plot('shotcmp'+shot,
		 '''
		 grey transp=y yreverse=y poly=y
		 title="CMP at %s km" max1=2 label2=Offset unit2=km screenratio=1.15
		 axisfat=3 titlefat=3 titlesz=8 labelfat=3 labelsz=6
		 wherexlabel=top
		 ''' % (str(j*0.0101)))
		Plot('hyperto'+num+'-'+shot,'hypertime offset',
			'''
			window n1=1 f1=%d n2=1 f2=%d | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
			graph yreverse=y plotcol=%d plotfat=4 min2=0 max2=2 screenratio=1.15
			axisfat=3 wanttitle=n wantaxis=n
			''' % (j,i,i+1))
		Plot('hyperhetto'+num+'-'+shot,'hyperhettime offset',
			'''
			window n1=1 f1=%d n2=1 f2=%d | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
			graph yreverse=y plotcol=%d plotfat=4 min2=0 max2=2 screenratio=1.15 dash=1
			axisfat=3 wanttitle=n wantaxis=n
			''' % (j,i,i+1))

Plot('box',None,'box font=2 x0=4.8 y0=8.6 label="Isotropic with velocity gradient" xt=0.000000 yt=0.000000')
Plot('hypercompare1',	''' shotcmp1 hyperto1-1 hyperto2-1 hyperto3-1 hyperto4-1 hyperto5-1
							hyperhetto1-1 hyperhetto2-1 hyperhetto3-1 hyperhetto4-1 hyperhetto5-1
						''','Overlay')
Result('hypercompare2',	''' shotcmp2 hyperto1-2 hyperto2-2 hyperto3-2 hyperto4-2 hyperto5-2
							hyperhetto1-2 hyperhetto2-2 hyperhetto3-2 hyperhetto4-2 hyperhetto5-2 box
						''','Overlay')
Plot('hypercompare3',	''' shotcmp3 hyperto1-3 hyperto2-3 hyperto3-3 hyperto4-3 hyperto5-3
							hyperhetto1-3 hyperhetto2-3 hyperhetto3-3 hyperhetto4-3 hyperhetto5-3
						''','Overlay')

#Result('hypercompare','hypercompare1 hypercompare3','SideBySideAniso')

Plotting flatness comparison

For last reflectors
for j in [s1,s2,s3]:
	if j == s1:
		sh = 1
	elif j == s2:
		sh = 2
	elif j == s3:
		sh = 3
	shot = str(sh)
	Flow('hypertimeshift'+shot,'vnmosqext t0sumext',
		''' math t0=${SOURCES[1]} output="sqrt(4*t0^2 + x3^2/input) - 2*t0"|
		window n1=1 f1=%d n2=1 f2=4
		''' % j)
	Flow('hyperhettimeshift'+shot,'vnmosqhetext t0sumext',
		''' math t0=${SOURCES[1]} output="sqrt(4*t0^2 + x3^2/input) - 2*t0"|
		window n1=1 f1=%d n2=1 f2=4
		''' % j)
	Flow('warped'+shot,'shotcmp'+shot+' hypertimeshift'+shot,'datstretch datum=${SOURCES[1]}')
	Flow('warpedhet'+shot,'shotcmp'+shot+' hyperhettimeshift'+shot,'datstretch datum=${SOURCES[1]}')
	Plot('warped'+shot,
	 '''
	 grey transp=y yreverse=y poly=y
	 title=" Corrected CMP at %s km (1D)" min1=1.55 max1=1.85 label2=Offset unit2=km screenratio=0.5
	 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
	 wherexlabel=top
	 ''' % str(j*0.0101))
	Plot('warpedhet'+shot,
	 '''
	 grey transp=y yreverse=y poly=y
	 title="Corrected CMP at %s km (Proposed)" min1=1.55 max1=1.85 label2=Offset unit2=km screenratio=0.5
	 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
	 wherexlabel=top
	 ''' % str(j*0.0101))
	Plot('t0to-'+shot,'t0sumext offset',
		'''
		window n1=1 f1=%d n2=1 f2=4 | scale dscale=2 | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
		graph yreverse=y plotcol=5 plotfat=16 min2=1.55 max2=1.85 screenratio=0.5 dash=1
		axisfat=3 wanttitle=n wantaxis=n
		''' % j)
	Plot('warpedn'+shot,'warped'+shot+' t0to-'+shot,'Overlay')
	Plot('warpedhetn'+shot,'warpedhet'+shot+' t0to-'+shot,'Overlay')
	
Result('warpedcompare2','warpedn2 warpedhetn2','TwoRows')

Ray tracing for numerical calculation of the second traveltime derivative
updown2=[1,2,3,4,5]
N2 = len(updown2)-1
xinitial = [4.,4.,4.,4.]
updown2str = ','.join(map(str,updown2)) # convert updown to a string
xinistr = ','.join(map(str,xinitial)) # convert updown to a string

Flow('ray-2','refcut',
	'''isaac2 niter=10 number=%d vstatus=%d debug=n xs=4.2626 xr=4.3026 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s xinitial=%s tol=1e-5''' % (N2,vstat,vstr,updown2str,xrefstr,zrefstr,gxstr,gzstr,xinistr))
Flow('ray-1','refcut',
	'''isaac2 niter=10 number=%d vstatus=%d debug=n xs=4.2826 xr=4.3026 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s xinitial=%s tol=1e-5''' % (N2,vstat,vstr,updown2str,xrefstr,zrefstr,gxstr,gzstr,xinistr))
Flow('ray0','refcut',
	'''isaac2 niter=10 number=%d vstatus=%d debug=n xs=4.3026 xr=4.5652 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s xinitial=%s tol=1e-5''' % (N2,vstat,vstr,updown2str,xrefstr,zrefstr,gxstr,gzstr,xinistr))
Flow('ray+1','refcut',
	'''isaac2 niter=10 number=%d vstatus=%d debug=n xs=4.3226 xr=4.3026 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s xinitial=%s tol=1e-5''' % (N2,vstat,vstr,updown2str,xrefstr,zrefstr,gxstr,gzstr,xinistr))
Flow('ray+2','refcut',
	'''isaac2 niter=10 number=%d vstatus=%d debug=n xs=4.4226 xr=4.3026 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s xinitial=%s tol=1e-5''' % (N2,vstat,vstr,updown2str,xrefstr,zrefstr,gxstr,gzstr,xinistr))

for k in ['-2','-1','0','+1','+2']:
	Plot('ray'+k,
		 '''
		 dd type=complex | window |
		 graph wanttitle=n wantaxis=n yreverse=y min2=0 max2=3 min1=0 max1=6 plotcol=7 plotfat=6 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
		 axisfat=3 titlefat=3 titlesz=10 labelfat=3 labelsz=6
		 ''')
Result('dt2dx2','ray0 ref','Overlay')

End()

Sripanich et al. 16 Effects of lateral heterogeneity

Hess VTI model

For the final example, we consider the Hess VTI model shown in Figure 7 and one
of its raw CMP gathers at 11.17 km. Due to the well-known limited applicability
of time processing in geologically complex media, we only focus at the structure
around this CMP gather. This choice allows us to test our approach in a realistic
layered anisotropic model, while ensuring that time processing remains applicable.
We focus on the effects of curved overburden layers related to the salt structure on
reflection traveltime and the corresponding NMO velocity. In this model, the top
two layers are isotropic, whereas the third and fourth layers are weakly anisotropic
with δ = 0.051 and 0.105, respectively. To ensure an agreement with the condition
of offset-to-depth ratio smaller than unity, the offset range up to approximately 2.5
km can be considered for the reflection from the bottom of the fourth layer.

(a)

(b)

Figure 7: (a) Hess VTI model (a) Vertical P-wave velocity and (b) Thomsen’s δ with

the considered CMP location indicated by the solid white line.

Figure 8 shows the CMP gather up to 4.8 km offset range overlain by moveout
approximations with NMO velocity computed based on the 1-D stratified medium

TCCS

from rsf.proj import *
from math import *
from rsf.gallery import hessvti

Import Hess model
hessvti.get_model('crho vp vx eta delta epsilon')

Plot('vpcol','vp',
	'''	
	window j1=3 j2=3|
	grey scalebar=y color=j bias=1.5 allpos=y barreverse=y title="V_p\^"
	screenratio=0.5 screenht=9 min1=0 max1=9 min2=0 max2=22 labelfat=4 labelsz=8
	titlefat=6 titlesz=10
	''')
Result('vx','grey scalebar=y color=j bias=1.5 allpos=y barreverse=y title="V_x\^" screenratio=0.5 screenht=9 min1=0 max1=9 min2=0 max2=22')
Result('crho','grey scalebar=y color=j bias=1.5 allpos=y barreverse=y title="Rho" screenratio=0.5 screenht=9')

Plot('deltacol','delta',
	'''
	window j1=3 j2=3|
	grey scalebar=y color=j allpos=y barreverse=y title="\F10 d\F3 "
	screenratio=0.5 screenht=9 min1=0 max1=9 min2=0 max2=22 labelfat=4 labelsz=8
	titlefat=6 titlesz=10
	''')
Result('epsilon','grey scalebar=y color=j allpos=y barreverse=y title="\F10 e\F3 " screenratio=0.5 screenht=9 min1=0 max1=9 min2=0 max2=22')
Result('eta','grey scalebar=y color=j allpos=y barreverse=y title="\F10 h\F3 " screenratio=0.5 screenht=9 min1=0 max1=9 min2=0 max2=22')

hessvti.get_shots('shots')

Result('shots','byte | grey3 flat=n frame1=500 frame2=300 frame3=300 title=Shots')

hessvti.get_zodata('zodata')

Result('zodata','grey title="Zero Offset" ')

Flow('lineshot','vp','window n2=1 max1=4 | math output=x1')
Flow('lineshotc','lineshot','math output="11.17" | cat axis=2 $SOURCE | transp | dd type=complex | window ')
Plot('lineshotc','graph wanttitle=n wantaxis=n plotfat=6 plotcol=0 screenratio=0.5 screenht=9 yreverse=y min2=0 max2=9 min1=0 max1=22 scalebar=y')
Result('vpline','vpcol lineshotc','Overlay')
Result('deltaline','deltacol lineshotc','Overlay')

Sort to CMP
Number of Shots: 720
Shot spacing: 100 ft
Receiver spacing: 40 ft -> 0.012192 km
Minimum offset: 0 ft
Maximum offset: 26200 ft
trace length: 7.992 s
sampling rate: 6ms

Flow('cmps','shots','shot2cmp half=n')

CMP at 14.5 km
Flow('onecmp','cmps','window n3=1 min3=14.5')
Plot('onecmp',
	'''
	grey title="CMP at 14.5 km" max1=7.5 label2=Offset unit2=km screenratio=0.75
	axisfat=3 titlefat=3 titlesz=18 labelfat=3 labelsz=14
 wherexlabel=top
	''')

Find layer index
Flow('onevp','vp','window n2=1 min2=14.5')
Flow('onedel','delta','window n2=1 min2=14.5')
Flow('diffonevp','onevp','deriv | envelope | smooth rect1=5')

layer = (0.6126,0.9296,1.332,2.161,3.088,4.4196,5.977,6.7605,8.028) # at 14.5 km
vp0 = (1.524,1.651,1.943,2.122,2.492,2.742,2.918,3.179,3.407) # From onevp
delta = (0.0,0.0,0.051,0.105,0.03,0.0,0.105,0.105,0.051) # From onedel

vnmo = (vp0[0]*sqrt(1+2*delta[0]), vp0[1]*sqrt(1+2*delta[1]), vp0[2]*sqrt(1+2*delta[2]), \
		vp0[3]*sqrt(1+2*delta[3]), vp0[4]*sqrt(1+2*delta[4]), vp0[5]*sqrt(1+2*delta[5]), \
		vp0[6]*sqrt(1+2*delta[6]), vp0[7]*sqrt(1+2*delta[7]), vp0[8]*sqrt(1+2*delta[8]))

nlayer = 5 # consider upto n-th layer

Flow('vp0.asc',None,
 '''
	echo %s
 n1=%d o1=0 d1=1
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(str,vp0)),nlayer))
Flow('vp0','vp0.asc','dd form=native')

Flow('vnmo.asc',None,
 '''
	echo %s
 n1=%d o1=0 d1=1
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(str,vnmo)),nlayer))
Flow('vnmo','vnmo.asc','dd form=native')

Flow('velocityver','vp0','spray d=0.006096 n=3617 | transp')
Flow('velocitynmo','vnmo','spray d=0.006096 n=3617 | transp')

Picked reflectors close to the CMP location (Other places are incorrect)
elayer = (0.6157,0.9388,1.341,2.146,3.121,4.554,5.767,6.791,8.071) # at 15 km
Flow('elayer.asc',None,
 '''
	echo %s
 n1=%d o1=0 d1=1
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(str,elayer)),nlayer))
Flow('elayer','elayer.asc','dd form=native ')

Flow('vpsemb','vp','window min2=10 max2=15 | deriv | smooth rect1=10 rect2=5')

listpick=[]

for i in range(0,nlayer):
	istr = str(i)
	if i == 0:
		Flow('sembcut-'+istr,'vpsemb','window max1=%g' %((layer[i]+layer[i+1])/2))
	elif i == 8:
		Flow('sembcut-'+istr,'vpsemb','window min1=%g' %((layer[i-1]+layer[i])/2))
	else:
		Flow('sembcut-'+istr,'vpsemb','window min1=%g max1=%g' %((layer[i-1]+layer[i])/2 ,(layer[i]+layer[i+1])/2))
	Flow('pick-'+istr,'sembcut-'+istr,'transp | pick vel0=%g norm=y ' %(elayer[i]))
	listpick.append('pick-'+istr)

Flow('pickall',listpick,'cat axis=2 ${SOURCES[1:%d]}'%nlayer)

Plot('vpsemb','grey wanttitle=n wantaxis=n min1=0 max1=8 min2=10 max2=15 screenratio=0.5 screenht=9')
Plot('pickall','graph yreverse=y wanttitle=n min2=0 max2=8 min1=10 max1=15 screenratio=0.5 screenht=9 plotfat=5')
Result('refcut','vpsemb pickall','Overlay')

Expand to the extend of the model
Flow('pickalle','pickall','expand top=1640 bottom=1155 left=0 right=0 | put o1=0')

Plot('vp','grey wanttitle=n wantaxis=n min1=0 max1=9 min2=0 max2=22 screenratio=0.5 screenht=9')
Plot('pickalle','graph yreverse=y wanttitle=n min2=0 max2=9 min1=0 max1=22 screenratio=0.5 screenht=9 plotfat=5')
Result('refext','vp pickalle','Overlay')

Flow('ref','pickalle','pad beg2=1 | put o2=0')
Flow('refs','pickalle','window | put o2=0 d2=1')
Flow('dips','refs','deriv scale=y')
Flow('curvs','dips','deriv scale=y ')

NMO velocity for the model
Compute depth
Flow('depth','ref refs','window n2=%d | math s=${SOURCES[1]} output="s-input" | put o2=0' %nlayer)
Flow('t0','depth velocityver','math v=${SOURCES[1]} output="input/v"')
Flow('v2t0','t0 velocitynmo','math v=${SOURCES[1]} output="input*v^2" ')

Flow('t0sum','t0','transp | causint | transp')
Flow('t0sumext','t0sum','spray axis=3 n=132 d=0.06096 o=0') # spray offset
Flow('vnmosq','v2t0 t0sum','transp | causint | transp | math t0=${SOURCES[1]} output="input/t0" ')
Flow('vnmosqext','vnmosq','spray axis=3 n=132 d=0.06096 o=0')
Flow('hypertime','vnmosqext t0sumext','math t0=${SOURCES[1]} output="sqrt(4*t0^2 + x3^2/input)"')

Flow('offset',None,'spike n1=132 d1=0.06096 o1=0 | math output=x1')

Taking into account heterogeneities

Flow('slow','velocityver',' math output="1/input" ')
Flow('vnmosqbylayer','velocitynmo',' math output="input^2" ')

Have to make sure the curvature is computed nicely otherwise doesn't work
Flow('vnmosqhet','refs vnmosqbylayer slow t0sum dips curvs',
	'''
	fermatrecursion vnmosq=${SOURCES[1]} slow=${SOURCES[2]} t0sum=${SOURCES[3]}
	dipcurv=y dip=${SOURCES[4]} curv=${SOURCES[5]}
	''')
Flow('vnmosqhetext','vnmosqhet','spray axis=3 n=132 d=0.06096 o=0')
Flow('hyperhettime','vnmosqhetext t0sumext','math t0=${SOURCES[1]} output="sqrt(4*t0^2 + x3^2/input)"')

Plotting comparison
s1=1700
s2=1722 # 10.5 km
s3=1832 # 11.17 km

for j in [s1,s2,s3]:
	if j == s1:
		sh = 1
	elif j == s2:
		sh = 2
	elif j == s3:
		sh = 3
	shot = str(sh)
	cmp = str(11.17)
	for i in range(nlayer):
		num = str(i+1)
		Flow('shotcmp'+shot,'cmps',' window n3=1 f3=%d f1=13 | put o1=0 '%j) # Window delay from wavelet
		Plot('shotcmp'+shot,
		 '''
		 grey transp=y yreverse=y
		 title="CMP at %s km" min1=0 max1=4 max2=4.8 label2=Offset unit2=km screenratio=1.15
		 axisfat=3 titlefat=3 titlesz=8 labelfat=3 labelsz=6
		 wherexlabel=top
		 ''' % cmp)
		Plot('hyperto'+num+'-'+shot,'hypertime offset',
			'''
			window n1=1 f1=%d n2=1 f2=%d | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
			graph yreverse=y plotcol=%d plotfat=4 min2=0 max2=4 min1=0 max1=4.8 screenratio=1.15
			axisfat=3 wanttitle=n wantaxis=n
			''' % (j,i,i+1))
		Plot('hyperhetto'+num+'-'+shot,'hyperhettime offset',
			'''
			window n1=1 f1=%d n2=1 f2=%d | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
			graph yreverse=y plotcol=%d plotfat=4 min2=0 max2=4 min1=0 max1=4.8 screenratio=1.15 dash=1
			axisfat=3 wanttitle=n wantaxis=n
			''' % (j,i,i+1))

Plot('box',None,'box font=2 x0=4.8 y0=8.6 label="Hess VTI" xt=0.000000 yt=0.000000')
# Plot('hypercompare1',	''' shotcmp1 hyperto1-1 hyperto2-1 hyperto3-1 hyperto4-1 hyperto5-1
# 							hyperhetto1-1 hyperhetto2-1 hyperhetto3-1 hyperhetto4-1 hyperhetto5-1
# 						''','Overlay')
Result('hypercomparehess2',	''' shotcmp2 hyperto1-2 hyperto2-2 hyperto3-2
							hyperhetto1-2 hyperhetto2-2 hyperhetto3-2
							box
						''','Overlay')
Result('hypercomparehess3',	''' shotcmp3 hyperto1-3 hyperto2-3 hyperto3-3 hyperto4-3
							hyperhetto1-3 hyperhetto2-3 hyperhetto3-3 hyperhetto4-3
							box
						''','Overlay')

#Result('hypercompare','hypercompare1 hypercompare2 hypercompare3','SideBySideAniso')

End()

Sripanich et al. 17 Effects of lateral heterogeneity

assumption and from the proposed formula (equation 11). Focusing on the fourth
reflection corresponding to the prominently curved interface, we can observe that
the new effective NMO velocity from the proposed method can describe the true
reflection traveltime with a higher noticeable accuracy in the range of the offset-to-
depth ratio limit (up to 2.5 km). However, even though for this particular reflection
from this model, the conclusion seems to also hold beyond 2.5 km offset range, similar
observation cannot be made for the third reflection event.

Figure 8: An example raw CMP gather from the Hess VTI model at 11.17 km. The
solid lines correspond to regular moveout predictions based on the assumption of 1-D
stratified model, whereas the dashed lines correspond to those from the proposed
framework that takes into account the effects from heterogeneity. We can observe a
better fitting from the latter.

TCCS

Sripanich et al. 18 Effects of lateral heterogeneity

Diffraction traveltime in multilayer media

In this section, we turn our attention to the case of diffraction traveltime and apply
the proposed framework to compute the effective time-migration velocity that honors
the effects from lateral heterogeneity (equation 7). The synthetic data are generated
from Kirchhoff modeling using an accurate two-point ray bending scheme (Sripanich
and Fomel, 2014).

Following similar procedure as before, we first evaluate the new expressions of
traveltime derivatives in each sublayer above a point diffractor (equation 15) and
evaluate the proposed recursive relationship (equations 11 and 12). We finally com-
pute equation 7 using the result from the recursion. We consider the same structural
model shown in Figure 4 but replace the bottommost reflector by a point diffractor
at 4.3 km.

Layered anisotropic model with a point diffractor

We first consider a similar layered anisotropic model. We limit our consideration
of the zero-offset section to a small area around 4.3 km to ensure the validity of
the underlying hyperbolic traveltime approximation for time migration. Figure 9a
shows the zero-offset section around the point diffractor before time migration with
two hyperbolic summation curves generated with migration velocities from the 1-
D assumption and from the proposed method. The flattened diffraction travelime
hyperbolas with both velocities are shown in Figure 9b, which indicates a better
performance of traveltime prediction from the proposed approach. The results from
zero-offset Kirchhoff migration is shown in Figure 10 with the focusing comparison
shown in Figure 11. We employ a computation of signal envelope to indicate which
diffraction responses is better focused. The higher the value of the envelope magnitude
at the center, the better focused the response is. The shape of the envelope pattern
also qualitatively indicates the degree of symmetry of the distributed energy. We
observe a superior diffraction response with higher focusing and more symmetric
envelope from the proposed method.

Layered isotropic model with velocity gradient and a point diffractor

In the final example, we consider a similar layered isotropic model with velocity
gradient . Again, both effects from the curved reflectors (derivatives of F) and the
laterally varying slowness (derivatives ofW) are important in this example. To ensure
that the image ray is close to the reference vertical ray, we reduce the magnitude of
the gradients to 30 % of the original values (Table 2).

Figure 12a shows a zero-offset data around the point diffractor before migration
overlain by two hyperbolic summation curves generated with migration velocities from
the 1-D assumption and from the proposed method. The corresponding flattened

TCCS

Sripanich et al. 19 Effects of lateral heterogeneity

(a) (b)

Figure 9: (a) An example zero-offset section from the layered anisotropic model
around 4.3 km. The solid lines correspond to regular hyperbolic summation curve
based on the assumption of 1-D stratified model, whereas the dashed lines cor-
respond to that from the proposed framework that takes into account the effects
from lateral heterogeneity. (b) Flattened diffraction events using the migration ve-
locity with 1-D assumption (top) and the proposed framework (bottom). We can
clearly observe improved flatness from using the proposed framework, which indi-
cates a better traveltime prediction and in turn, a more focused migrated response.

TCCS

from rsf.proj import *
from math import *

#2D Example--
xmax = 6.0
zmax = 3.0

Forel
#layers = ((0.00,0.00,0.00,0.00,0.00),
#	 	(0.30,0.50,0.375,0.20,0.30),
(0.55,0.75,0.6,0.45,0.55),
(0.65,0.85,0.7,0.55,0.65),
#	 	(1.30,1.30,1.45,1.60,1.20),
#	 	(2.0,2.0,2.0,2.0,2.0))
layers = ((0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),
	 	(0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3),
 (0.5,0.5,0.5,0.5,0.65,0.9,0.65,0.5),
 (0.85,0.85,0.85,0.95,1.2,1.3,1.3,1.3),
	 	(1.55,1.55,1.55,1.55,1.55,1.55,1.55,1.55),
	 	(2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0))
layers = ((0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),
# 	 	(0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3),
(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5),
(0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85),
# 	 	(1.55,1.55,1.55,1.55,1.55,1.55,1.55,1.55),
# 	 	(2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0))
	 	
Flat
#flatlayers = ((0.00,0.00,0.00,0.00,0.00),
#	 	(0.375,0.375,0.375,0.375,0.375),
(0.6,0.6,0.6,0.6,0.6),
(0.7,0.7,0.7,0.7,0.7),
#	 	(1.45,1.45,1.45,1.45,1.45),
#	 	(2.0,2.0,2.0,2.0,2.0))
flatlayers = ((0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),
	 	(1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0),
 (2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0),
 (3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0),
	 	(4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0),
	 	(5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0))

def arr2str(array,sep=' '):
 return sep.join(map(str,array))

n1 = len(layers[0])
n2 = len(layers)

Generate reflectors
Flow('layers.asc',None,
 '''
	echo %s
 n1=%d n2=%d o1=0 d1=%g
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(arr2str,layers)),
 n1,n2,xmax/(n1-1)))
Flow('layers','layers.asc','dd form=native')

d = 0.0101 # non-round for reproducibility

Flow('refl1','layers',''' window n2=1 f2=0| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl2','layers',''' window n2=1 f2=1| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl3','layers',''' window n2=1 f2=2| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl4','layers',''' window n2=1 f2=3| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl5','layers',''' window n2=1 f2=4| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl6','layers',''' window n2=1 f2=5| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))

Flow('ref','refl1 refl2 refl3 refl4 refl5 refl6', '''cat axis=2 ${SOURCES[1:6]} | math output="input*3/2"''')

Plot('ref','''graph yreverse=y wanttitle=n label1=Distance unit1=km plotfat=6
 label2=Depth unit2=km min2=0 max2=3 min1=0 max1=6
					 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
					 axisfat=3 titlefat=3 titlesz=10 labelfat=3 labelsz=6''')

Flow('flat.asc',None,
 '''
	echo %s
 n1=%d n2=%d o1=0 d1=%g
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(arr2str,flatlayers)),
 n1,n2,xmax/(n1-1)))
Flow('flats','flat.asc','dd form=native')

Flow('reflf1','flats',''' window n2=1 f2=0| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf2','flats',''' window n2=1 f2=1| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf3','flats',''' window n2=1 f2=2| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf4','flats',''' window n2=1 f2=3| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf5','flats',''' window n2=1 f2=4| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf6','flats',''' window n2=1 f2=5| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))

Flow('reff','reflf1 reflf2 reflf3 reflf4 reflf5 reflf6', '''cat axis=2 ${SOURCES[1:6]} ''')

#anisotropy (Q must not equal to 1 in the case of anisotropy)
c11,c33, Q1, Q3

aniso = ((9.0,9.01,1.0001,1.001), # constant velocity 3 km/s
 (12.716,10.233,1.128,1.137), # Africa shale
 (13.0,13.01,1.0001,1.001), #constant velocity sqrt(13) km/s
 (14.47,9.57,1.58,1.68), # Greenhorn Jones & Wang
	 	 (22.05,14.89,1.344,1.423)) # North sea Vernik & Liu

n3 = len(aniso[0])
n4 = len(aniso)

Flow('aniso.asc',None,
 '''
	echo %s
 n1=%d n2=%d o1=0 d1=1
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(arr2str,aniso)),
 n3,n4))
Flow('aniso','aniso.asc','dd form=native')
Model specifications

updown=[1,2,3,4,5,4,3,2,1,0]
N = len(updown)-1
vstat = 2
gx = [0.0,0.0,0.0,0.0,0.0]
gz = [0.0,0.0,0.0,0.0,0.0]
v = [1,1,1,1,1]
vcol = [1.508,1.581,1.69,1.826,2,2.2]
xref = [0.1,0.1,0.1,0.1,0.1]
zref = [0.2,0.45,0.6,1.2,1.5]

xrefstr = ','.join(map(str,xref)) # convert xref to a string
zrefstr = ','.join(map(str,zref)) # convert zref to a string
gxstr = ','.join(map(str,gx)) # convert gx to a string
gzstr = ','.join(map(str,gz)) # convert gz to a string
updownstr = ','.join(map(str,updown)) # convert updown to a string
vstr = ','.join(map(str,v)) # convert v to a string
vcolstr = ','.join(map(str,vcol)) # convert vcol to a string

Flow('xrefl','ref aniso',
	'''isaac2 niter=500 number=%d vstatus=%d debug=n xs=2.3 xr=4.3 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s tol=0.0001 aniso=${SOURCES[1]}''' % (N,vstat,vstr,updownstr,xrefstr,zrefstr,gxstr,gzstr))
Plot('xrefl',
	 '''
	 dd type=complex | window |
	 graph wanttitle=n wantaxis=n yreverse=y min2=0 max2=3 min1=0 max1=6 plotcol=7 plotfat=6 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
	 axisfat=3 titlefat=3 titlesz=6 labelfat=1 labelsz=4
	 ''')
Plot('xrefl-points','xrefl',
	 '''
	 dd type=complex | window |
	 graph wanttitle=n wantaxis=n yreverse=y min2=0 max2=3 min1=0 max1=6 plotcol=7 plotfat=6 symbol=* symbolsz=10 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5 axisfat=3 titlefat=3 titlesz=6 labelfat=1 labelsz=4
	 ''')
Result('v','xrefl xrefl-points ref','Overlay')# Plot of 2D ray

Plot of model 1
Flow('mod1','ref',
 '''
 window n2=5 f2=1 |
 unif2 d1=%g n1=%d v00=%s
 ''' % (d,int(1.5+zmax/d),vstr))

Flow('modcol','ref',
 '''
 window n2=5 f2=1 |
 unif2 d1=%g n1=%d v00=%s
 ''' % (d,int(1.5+zmax/d),vcolstr))

Result('mod1',
 '''
 grey color=j
 screenratio=%g screenht=4 wanttitle=n
 mean=y labelfat=1 labelsz=4
 label1="Depth (km)"
 label2="Distance (km)"
 ''' % (zmax/xmax))

Flow('lineshot','modcol','window n2=1 f2=426 | math output=x1')
Flow('lineshotc','lineshot','math output="426*0.0101" | cat axis=2 $SOURCE | transp | dd type=complex | window ')
Plot('lineshotc','graph screenratio=%g yreverse=y screenht=4 min1=0 max1=6 wanttitle=n wantaxis=n plotfat=4 plotcol=7' % (zmax/xmax))
Plot('modcol',
 '''
 grey color=j
 screenratio=%g screenht=4 wanttitle=n
 mean=y labelfat=2 labelsz=4
 label1="Depth (km)"
 label2="Distance (km)"
 ''' % (zmax/xmax))
Result('modcol','modcol lineshotc','Overlay')

v1 = 3
v2 = 3.2
v3 = 3.6
v4 = 3.1
v5 = 3.86

vnmo1 = sqrt(v1*v1)
vnmo2 = sqrt(12.716/1.137)
vnmo3 = sqrt(v3*v3)
vnmo4 = sqrt(14.47/1.68)
vnmo5 = sqrt(22.05/1.423)

vver = (v1,v2,v3,v4,v5)
Flow('vver.asc',None,
 '''
	echo %s
 n1=%d o1=0 d1=1
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(str,vver)),5))
Flow('vver','vver.asc','dd form=native')

vnmo = (vnmo1,vnmo2,vnmo3,vnmo4,vnmo5)
Flow('vnmo.asc',None,
 '''
	echo %s
 n1=%d o1=0 d1=1
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(str,vnmo)),5))
Flow('vnmo','vnmo.asc','dd form=native')

Flow('velocityver','vver','spray d=%f n=%d | transp' % (d,int(1.5+xmax/d)))
Flow('velocitynmo','vnmo','spray d=%f n=%d | transp' % (d,int(1.5+xmax/d)))

Forel
Flow('refs','ref','window n2=5 f2=1 | put o2=0')
Flow('dips','refs','deriv scale=y')

Flow('diffrac1','refs','math output="1.0" | cut n2=4 | math output="1.0 - input" ')
Flow('diffrac2','refs','math output="1.0" | cut f1=420 n1=11 | math output="1.0 - input" ')
Flow('diffractivity','diffrac1 diffrac2','add ${SOURCES[1]} | mask min=1 | dd type=float ')

Kirchhoff modeling
shotscmp = (2.5,3.0,3.5)
plotscmp = []

Flow('zo','refs dips diffractivity aniso',
 '''
 kirmod_newton nt=751 dt=0.004 freq=15 cmp=y
 ns=201 s0=3.2825 ds=0.0101 nh=1 dh=0.04 h0=0 verb=y
 debug=n fwdxini=y
 vstatus=%d debug=n
 dip=${SOURCES[1]} refl=${SOURCES[2]} aniso=${SOURCES[3]}
 ''' %(vstat))
Flow('zotaper','zo','window | pow pow1=1 | costaper nw1=25 | costaper nw2=25')
Result('zotaper',
 '''
 window | grey transp=y yreverse=y poly=y
 title="Zero-offset section" label2=Midpoint unit2=km screenratio=1.3
 axisfat=3 titlefat=3 titlesz=18 labelfat=3 labelsz=14 max1=2
 wherexlabel=top
 ''')

NMO velocity for the model
Compute depth
Flow('depth','ref refs','window n2=5 | math s=${SOURCES[1]} output="s-input" | put o2=0')
Flow('t0','depth velocityver','math v=${SOURCES[1]} output="input/v"')
Flow('v2t0','t0 velocitynmo','math v=${SOURCES[1]} output="input*v^2" ')

Flow('t0sum','t0','transp | causint | transp')
Flow('t0sumext','t0sum','spray axis=3 n=201 d=0.0101 o=-1.01')
Flow('vnmosq','v2t0 t0sum','transp | causint | transp | math t0=${SOURCES[1]} output="input/t0" ')
Flow('vnmosqext','vnmosq','spray axis=3 n=201 d=0.0101 o=-1.01')
Flow('hypertime','vnmosqext t0sumext','math t0=${SOURCES[1]} output="2*sqrt(t0^2 + (x3)^2/input)"')

Flow('offset',None,'spike n1=201 d1=0.0101 o1=-1.01 | math output=x1')

Taking into account heterogeneities

Flow('slow','velocityver',' math output="1/input" ')
Flow('vnmosqbylayer','velocitynmo',' math output="input^2" ')

Flow('vnmosqhet','refs vnmosqbylayer slow t0sum',
	'''
	fermatrecursion vnmosq=${SOURCES[1]} slow=${SOURCES[2]} t0sum=${SOURCES[3]}
	''')
Flow('vnmosqhetext','vnmosqhet','spray axis=3 n=201 d=0.0101 o=-1.01')
Flow('hyperhettime','vnmosqhetext t0sumext','math t0=${SOURCES[1]} output="2*sqrt(t0^2 + (x3)^2/input)"')

Plotting comparison
s3=426

for j in [s3]:
	sh = 3
	shot = str(sh)
	for i in range(4,5):
		num = str(i+1)
		Flow('zo'+shot,'zotaper',' window ')
		Plot('zo'+shot,
		 '''
		 grey transp=y yreverse=y poly=y pclip=95
		 title="Zero-offset diffraction at %s km" min1=0 max1=2 label2=Midpoint unit2=km screenratio=1.5
		 axisfat=3 titlefat=3 titlesz=6 labelfat=3 labelsz=6
		 wherexlabel=top
		 ''' % (str(j*0.0101)))
		Plot('hyperto'+num+'-'+shot,'hypertime offset',
			'''
			window n1=1 f1=%d n2=1 f2=%d | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
			graph yreverse=y plotcol=%d plotfat=4 min2=0 max2=2 screenratio=1.5
			axisfat=3 wanttitle=n wantaxis=n
			''' % (j,i,i+1))
		Plot('hyperhetto'+num+'-'+shot,'hyperhettime offset',
			'''
			window n1=1 f1=%d n2=1 f2=%d | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
			graph yreverse=y plotcol=%d plotfat=4 min2=0 max2=2 screenratio=1.5 dash=1
			axisfat=3 wanttitle=n wantaxis=n
			''' % (j,i,i+1))

Plot('box',None,'box font=2 x0=4.8 y0=8.6 label="Isotropic with velocity gradient" xt=0.000000 yt=0.000000')
# Plot('hypercompare1',	''' shotcmp1 hyperto1-1 hyperto2-1 hyperto3-1 hyperto4-1 hyperto5-1
# 							hyperhetto1-1 hyperhetto2-1 hyperhetto3-1 hyperhetto4-1 hyperhetto5-1
# 						''','Overlay')
# Result('hypercompare2',	''' zo2
# 							hyperhetto4-2 hyperhetto5-2
# 						''','Overlay')
Result('hypercompareanisodiff3',	''' zo3 hyperto5-3
							hyperhetto5-3
						''','Overlay')

Plotting flatness comparison
For last reflectors
for j in [s3]:
	sh = 3
	shot = str(sh)
	Flow('hypertimeshift'+shot,'vnmosqext t0sumext',
		''' math t0=${SOURCES[1]} output="2*sqrt(t0^2 + (x3)^2/input) - 2*t0"|
		window n1=1 f1=%d n2=1 f2=4
		''' % j)
	Flow('hyperhettimeshift'+shot,'vnmosqhetext t0sumext',
		''' math t0=${SOURCES[1]} output="2*sqrt(t0^2 + (x3)^2/input) - 2*t0"|
		window n1=1 f1=%d n2=1 f2=4
		''' % j)
	Flow('warped'+shot,'zo'+shot+' hypertimeshift'+shot,'datstretch datum=${SOURCES[1]}')
	Flow('warpedhet'+shot,'zo'+shot+' hyperhettimeshift'+shot,'datstretch datum=${SOURCES[1]}')
	Plot('warped'+shot,
	 '''
	 grey transp=y yreverse=y poly=y
	 title="Flattened at %s km (1D)" min1=1.65 max1=1.95 label2=Midpoint unit2=km screenratio=0.5
	 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
	 wherexlabel=top
	 ''' % str(j*0.0101))
	Plot('warpedhet'+shot,
	 '''
	 grey transp=y yreverse=y poly=y
	 title="Flattened at %s km (Proposed)" min1=1.65 max1=1.95 label2=Midpoint unit2=km screenratio=0.5
	 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
	 wherexlabel=top
	 ''' % str(j*0.0101))
	Plot('t0to-'+shot,'t0sumext offset',
		'''
		window n1=1 f1=%d n2=1 f2=4 | scale dscale=2 | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
		graph yreverse=y plotcol=5 plotfat=16 min2=1.65 max2=1.95 screenratio=0.5 dash=1
		axisfat=3 wanttitle=n wantaxis=n
		''' % j)
	Plot('warpedn'+shot,'warped'+shot+' t0to-'+shot,'Overlay')
	Plot('warpedhetn'+shot,'warpedhet'+shot+' t0to-'+shot,'Overlay')
	
Result('warpedhypercompareaniso3','warpedn3 warpedhetn3','TwoRows')

Plotting migrated results comparison
Flow('vold','vnmosq','math output="sqrt(input)" | window n1=1 f1=426')
vold = '3,3.229,3.336,3.272,3.413'

Flow('vnew','vnmosqhet','math output="sqrt(input)" | window n1=1 f1=426')
vnew = '3,3.229,3.423,3.442,3.92'

Shift the pulse a bit to ensure the correct velocity is applied
Flow('refdiff','t0sum','window n1=1 f1=425 | add scale=2 | spray axis=2 n=201 o=3.2825 d=0.0101 | transp')
Flow('vdiffmodelold','refdiff','unif2 d1=0.004 n1=751 v00=%s | smooth rect1=10' %vold)
Flow('vdiffmodelnew','refdiff','unif2 d1=0.004 n1=751 v00=%s | smooth rect1=10' %vnew)

Flow('oldmig','zotaper vdiffmodelold',' window | mig2 antialias=1.0 vel=${SOURCES[1]}')
Flow('newmig','zotaper vdiffmodelnew',' window | mig2 antialias=1.0 vel=${SOURCES[1]}')

Plot('oldmig',
 '''
 grey transp=y yreverse=y poly=y pclip=99
 title="Migrated diffraction (1D)" min1=0 max1=2 label2=Midpoint unit2=km screenratio=0.75
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=12
 wherexlabel=top
 ''')
Plot('newmig',
 '''
 grey transp=y yreverse=y poly=y pclip=99
 title="Migrated diffraction (Proposed)" min1=0 max1=2 label2=Midpoint unit2=km screenratio=0.75
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=12
 wherexlabel=top
 ''')

Result('migcompareaniso','oldmig newmig','SideBySideAniso')

Focusing measurement
Flow('oldmigfocus','oldmig','window min1=1.65 max1=1.9 | focus dim=2 rect1=10 rect2=3')
Flow('newmigfocus','newmig','window min1=1.65 max1=1.9 | focus dim=2 rect1=10 rect2=3')

Plot('oldmigfocus',
 '''
 grey transp=y yreverse=y poly=y pclip=99
 title="Focus of migrated diffraction (1D)" min1=1.65 max1=1.9 label2=Midpoint unit2=km screenratio=0.55
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
 wherexlabel=top color=j allpos=y
 ''')
Plot('newmigfocus',
 '''
 grey transp=y yreverse=y poly=y pclip=99
 title="Focus of migrated diffraction (Proposed)" min1=1.65 max1=1.9 label2=Midpoint unit2=km screenratio=0.55
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
 wherexlabel=top color=j allpos=y
 ''')

Result('focuscompareaniso','oldmigfocus newmigfocus','TwoRows')

Focusing measurement with envelope
Flow('oldmigenv','oldmig','window min1=1.65 max1=1.9 | envelope')
Flow('newmigenv','newmig','window min1=1.65 max1=1.9 | envelope')
Plot('oldmigenv',
 '''
 grey transp=y yreverse=y poly=y
 title="Focus of migrated diffraction (1D)" min1=1.65 max1=1.9 label2=Midpoint unit2=km screenratio=0.55
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
 wherexlabel=top color=j allpos=y scalebar=y maxval=0.082 clip=0.082
 ''')
Plot('newmigenv',
 '''
 grey transp=y yreverse=y poly=y
 title="Focus of migrated diffraction (Proposed)" min1=1.65 max1=1.9 label2=Midpoint unit2=km screenratio=0.55
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
 wherexlabel=top color=j allpos=y scalebar=y maxval=0.082 clip=0.082
 ''')

Result('envcompareaniso','oldmigenv newmigenv','TwoRows')

End()

Sripanich et al. 20 Effects of lateral heterogeneity

Figure 10: A zero-offset migrated section for the layered anisotropic model. The
resultant point diffractor appears to be better focused from the proposed method
(right) than from the regular migration velocity based on 1-D assumption (left).

diffraction travelime hyperbolas are shown in Figure 12b, which suggests a superior
performance in traveltime prediction from the proposed method. Figure 13 shows
the results from zero-offset Kirchhoff migration and Figure 14 shows their envelope
focusing comparison. Similarly to the layered anisotropic case, we observe a superior
diffraction response with higher and more symmetric focusing from the proposed
method.

DISCUSSION

It is worth emphasizing that even though we rely on the accuracy of traveltime pre-
dictions to verify the effectiveness of our proposed framework, it is not intended to be
used in place of other numerical methods that can compute the traveltime derivatives
more accurately such as the paraxial ray theory. The importance of our work lies in
its contribution to the fundamental understanding on how effects from lateral het-
erogeneity can be characterized (derivatives of F and W) and on how they can affect
the parameters—normal-moveout velocity and time-migration velocity—we routinely
use in time processing. The relationship between traveltime derivatives at different
surfaces that leads to the recursion (equation 12) employed in this study is also closely
related to that used in the development of important processing techniques such as
Dix inversion. To elaborate on this final point further, we can take, for example, the

TCCS

Sripanich et al. 21 Effects of lateral heterogeneity

Figure 11: A focusing comparison of migrated point diffractors for the layered
anisotropic model. The proposed method leads to a higher magnitude of the fo-
cusing at the center and a more symmetric response, which indicates its superior
performance.

TCCS

Sripanich et al. 22 Effects of lateral heterogeneity

(a) (b)

Figure 12: An example zero-offset section from the layered isotropic model around
4.3 km. The solid lines correspond to regular hyperbolic summation curve based
on the assumption of 1-D stratified model, whereas the dashed lines correspond
to that from the proposed framework that takes into account the effects from
lateral heterogeneity. (b) Flattened diffraction events using the migration veloc-
ity with 1-D assumption (top) and the proposed framework (bottom). We can
clearly observe improved flatness from using the proposed framework, which indi-
cates a better traveltime prediction and in turn, a more focused migrated response.

TCCS

from rsf.proj import *
from math import *

#2D Example--
xmax = 6.0
zmax = 3.0

Forel
#layers = ((0.00,0.00,0.00,0.00,0.00),
#	 	(0.30,0.50,0.375,0.20,0.30),
(0.55,0.75,0.6,0.45,0.55),
(0.65,0.85,0.7,0.55,0.65),
#	 	(1.30,1.30,1.45,1.60,1.20),
#	 	(2.0,2.0,2.0,2.0,2.0))
layers = ((0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),
	 	(0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3),
 (0.5,0.5,0.5,0.5,0.65,0.9,0.65,0.5),
 (0.85,0.85,0.85,0.95,1.2,1.3,1.3,1.3),
	 	(1.55,1.55,1.55,1.55,1.55,1.55,1.55,1.55),
	 	(2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0))
layers = ((0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),
# 	 	(0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3),
(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5),
(0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85),
# 	 	(1.55,1.55,1.55,1.55,1.55,1.55,1.55,1.55),
# 	 	(2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0))
	 	
Flat
#flatlayers = ((0.00,0.00,0.00,0.00,0.00),
#	 	(0.375,0.375,0.375,0.375,0.375),
(0.6,0.6,0.6,0.6,0.6),
(0.7,0.7,0.7,0.7,0.7),
#	 	(1.45,1.45,1.45,1.45,1.45),
#	 	(2.0,2.0,2.0,2.0,2.0))
flatlayers = ((0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),
	 	(1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0),
 (2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0),
 (3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0),
	 	(4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0),
	 	(5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0))

def arr2str(array,sep=' '):
 return sep.join(map(str,array))

n1 = len(layers[0])
n2 = len(layers)

Generate reflectors
Flow('layers.asc',None,
 '''
	echo %s
 n1=%d n2=%d o1=0 d1=%g
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(arr2str,layers)),
 n1,n2,xmax/(n1-1)))
Flow('layers','layers.asc','dd form=native')

d = 0.0101 # non-round for reproducibility

Flow('refl1','layers',''' window n2=1 f2=0| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl2','layers',''' window n2=1 f2=1| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl3','layers',''' window n2=1 f2=2| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl4','layers',''' window n2=1 f2=3| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl5','layers',''' window n2=1 f2=4| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('refl6','layers',''' window n2=1 f2=5| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))

Flow('ref','refl1 refl2 refl3 refl4 refl5 refl6', '''cat axis=2 ${SOURCES[1:6]} | math output="input*3/2"''')

Plot('ref','''graph yreverse=y wanttitle=n label1=Distance unit1=km plotfat=6
 label2=Depth unit2=km min2=0 max2=3 min1=0 max1=6
					 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
					 axisfat=3 titlefat=3 titlesz=10 labelfat=3 labelsz=6''')

Flow('flat.asc',None,
 '''
	echo %s
 n1=%d n2=%d o1=0 d1=%g
 data_format=ascii_float in=$TARGET
 ''' % (' '.join(map(arr2str,flatlayers)),
 n1,n2,xmax/(n1-1)))
Flow('flats','flat.asc','dd form=native')

Flow('reflf1','flats',''' window n2=1 f2=0| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf2','flats',''' window n2=1 f2=1| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf3','flats',''' window n2=1 f2=2| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf4','flats',''' window n2=1 f2=3| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf5','flats',''' window n2=1 f2=4| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))
Flow('reflf6','flats',''' window n2=1 f2=5| spline o1=0 d1=%g n1=%d '''% (d,int(1.5+xmax/d)))

Flow('reff','reflf1 reflf2 reflf3 reflf4 reflf5 reflf6', '''cat axis=2 ${SOURCES[1:6]} ''')

Model specifications
v1 = 2.5
v2 = 3.2
v3 = 3.4
v4 = 3.7
v5 = 3.86

updown=[1,2,3,4,5,4,3,2,1,0]
N = len(updown)-1
vstat = 1 # 1-velocity gradient
scale=0.3
gx = [-0.06*scale,0.15*scale,0.2*scale,0.3*scale,0.35*scale]
gx = [0.,0.,0.,0.,0.]
gz = [0.0,0.0,0.0,0.0,0.0]
v = [v1,v2,v3,v4,v5]
vcol = [1.508,1.581,1.69,1.826,2,2.2]
xref = [3.0,3.0,3.0,3.0,3.0]
zref = [0.0,0.375,0.6,0.7,1.45]

xrefstr = ','.join(map(str,xref)) # convert xref to a string
zrefstr = ','.join(map(str,zref)) # convert zref to a string
gxstr = ','.join(map(str,gx)) # convert gx to a string
gzstr = ','.join(map(str,gz)) # convert gz to a string
updownstr = ','.join(map(str,updown)) # convert updown to a string
vstr = ','.join(map(str,v)) # convert v to a string
vcolstr = ','.join(map(str,vcol)) # convert vcol to a string

Flow('refcut','ref','window n2=6 | put o2=0')
Flow('xrefl','refcut',
	'''isaac2 niter=500 number=%d vstatus=%d debug=n xs=2 xr=4 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s tol=0.0001''' % (N,vstat,vstr,updownstr,xrefstr,zrefstr,gxstr,gzstr))
Plot('xrefl',
	 '''
	 dd type=complex | window |
	 graph wanttitle=n wantaxis=n yreverse=y min2=0 max2=3 min1=0 max1=6 plotcol=7 plotfat=6 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
	 axisfat=3 titlefat=3 titlesz=10 labelfat=3 labelsz=6
	 ''')
Plot('xrefl-points','xrefl',
	 '''
	 dd type=complex | window |
	 graph wanttitle=n wantaxis=n yreverse=y min2=0 max2=3 min1=0 max1=6 plotcol=7 plotfat=6 symbol=* symbolsz=10 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
	 axisfat=3 titlefat=3 titlesz=10 labelfat=3 labelsz=6
	 ''')
Result('v','xrefl xrefl-points ref','Overlay')# Plot of 2D ray

Plot of model 1
Flow('mod1','ref',
 '''
 window n2=5 f2=1 |
 unif2 d1=%g n1=%d v00=%s dvdx=%s x0=%s
 ''' % (d,int(1.5+zmax/d),vstr,gxstr,xrefstr))
''' % (d,int(1.5+zmax/d),vstr+',0.0',gxstr+',0.0',xrefstr+',0.0'))

Flow('modcol','ref',
 '''
 window n2=5 f2=1 |
 unif2 d1=%g n1=%d v00=%s
 ''' % (d,int(1.5+zmax/d),vcolstr))

Flow('velocity','reff',
 '''
 window n2=5 f2=1 |
 unif2 d1=%g n1=%d v00=%s dvdx=%s x0=%s |
 transp
 ''' % (1,5,vstr,gxstr,xrefstr))

Result('mod1',
 '''
 grey color=j
 screenratio=%g screenht=4 wanttitle=n
 labelfat=3 labelsz=6 scalebar=y
 maxval=5.2 minval=2.2 allpos=y bias=2.2 clip=3
 label1="Depth (km)"
 label2="Distance (km)"
 barlabel="Velocity (km/s)"
 ''' % (zmax/xmax))

Flow('lineshot','modcol','window n2=1 f2=426 | math output=x1')
Flow('lineshotc','lineshot','math output="426*0.0101" | cat axis=2 $SOURCE | transp | dd type=complex | window ')
Plot('lineshotc','graph screenratio=%g yreverse=y screenht=4 min1=0 max1=6 wanttitle=n wantaxis=n plotfat=4 plotcol=7' % (zmax/xmax))
Plot('modcol',
 '''
 grey color=j
 screenratio=%g screenht=4 wanttitle=n
 mean=y labelfat=2 labelsz=4
 label1="Depth (km)"
 label2="Distance (km)"
 ''' % (zmax/xmax))
Result('modcol','modcol lineshotc','Overlay')

Flow('refs','ref','window n2=5 f2=1 | put o2=0')
Flow('dips','refs','deriv scale=y')

Flow('diffrac1','refs','math output="1.0" | cut n2=4 | math output="1.0 - input" ')
Flow('diffrac2','refs','math output="1.0" | cut f1=420 n1=11 | math output="1.0 - input" ')
Flow('diffractivity','diffrac1 diffrac2','add ${SOURCES[1]} | mask min=1 | dd type=float ')

Kirchhoff modeling
shotscmp = (2.5,3.0,3.5)
plotscmp = []

Flow('zo','refs dips diffractivity',
 '''
 kirmod_newton nt=751 dt=0.004 freq=15 cmp=y
 ns=201 s0=3.2825 ds=0.0101 nh=1 dh=0.04 h0=0 verb=y
 debug=n fwdxini=y
 vstatus=%d velocity=%s debug=n
 xref=%s zref=%s xgradient=%s zgradient=%s dip=${SOURCES[1]} refl=${SOURCES[2]}
 ''' %(vstat,vstr,xrefstr,zrefstr,gxstr,gzstr))
Flow('zotaper','zo','window | pow pow1=1 | costaper nw1=25 | costaper nw2=25')
Result('zotaper',
 '''
 window | grey transp=y yreverse=y poly=y
 title="Zero-offset section" label2=Midpoint unit2=km screenratio=1.3
 axisfat=3 titlefat=3 titlesz=18 labelfat=3 labelsz=14 max1=2
 wherexlabel=top
 ''')

NMO velocity for the model
Compute depth
Flow('depth','ref refs','window n2=5 | math s=${SOURCES[1]} output="s-input" | put o2=0')
Flow('t0','depth velocity','math v=${SOURCES[1]} output="input/v"')
Flow('v2t0','t0 velocity','math v=${SOURCES[1]} output="input*v^2" ')

Flow('t0sum','t0','transp | causint | transp')
Flow('t0sumext','t0sum','spray axis=3 n=201 d=0.0101 o=-1.01')
Flow('vnmosq','v2t0 t0sum','transp | causint | transp | math t0=${SOURCES[1]} output="input/t0" ')
Flow('vnmosqext','vnmosq','spray axis=3 n=201 d=0.0101 o=-1.01')
Flow('hypertime','vnmosqext t0sumext','math t0=${SOURCES[1]} output="2*sqrt(t0^2 + (x3)^2/input)"')

Flow('offset',None,'spike n1=201 d1=0.0101 o1=-1.01 | math output=x1')

Taking into account heterogeneities

Flow('slow','velocity',' math output="1/input" ')
Flow('vnmosqbylayer','velocity',' math output="input^2" ')

Flow('vnmosqhet','refs vnmosqbylayer slow t0sum',
	'''
	sffermatrecursion vnmosq=${SOURCES[1]} slow=${SOURCES[2]} t0sum=${SOURCES[3]}
	''')
Flow('vnmosqhetext','vnmosqhet','spray axis=3 n=201 d=0.0101 o=-1.01')
Flow('hyperhettime','vnmosqhetext t0sumext','math t0=${SOURCES[1]} output="2*sqrt(t0^2 + (x3)^2/input)"')

Plotting comparison
s3=426

for j in [s3]:
	sh = 3
	shot = str(sh)
	for i in range(4,5):
		num = str(i+1)
		Flow('zo'+shot,'zotaper',' window ')
		Plot('zo'+shot,
		 '''
		 grey transp=y yreverse=y poly=y pclip=95
		 title="Zero-offset diffraction at %s km" min1=0 max1=2 label2=Midpoint unit2=km screenratio=1.5
		 axisfat=3 titlefat=3 titlesz=6 labelfat=3 labelsz=6
		 wherexlabel=top
		 ''' % (str(j*0.0101)))
		Plot('hyperto'+num+'-'+shot,'hypertime offset',
			'''
			window n1=1 f1=%d n2=1 f2=%d | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
			graph yreverse=y plotcol=%d plotfat=4 min2=0 max2=2 screenratio=1.5
			axisfat=3 wanttitle=n wantaxis=n
			''' % (j,i,i+1))
		Plot('hyperhetto'+num+'-'+shot,'hyperhettime offset',
			'''
			window n1=1 f1=%d n2=1 f2=%d | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
			graph yreverse=y plotcol=%d plotfat=4 min2=0 max2=2 screenratio=1.5 dash=1
			axisfat=3 wanttitle=n wantaxis=n
			''' % (j,i,i+1))

Plot('box',None,'box font=2 x0=4.8 y0=8.6 label="Isotropic with velocity gradient" xt=0.000000 yt=0.000000')
# Plot('hypercompare1',	''' shotcmp1 hyperto1-1 hyperto2-1 hyperto3-1 hyperto4-1 hyperto5-1
# 							hyperhetto1-1 hyperhetto2-1 hyperhetto3-1 hyperhetto4-1 hyperhetto5-1
# 						''','Overlay')
#Result('hypercompare2',	''' zo2
#							hyperhetto4-2 hyperhetto5-2
#						''','Overlay')
Result('hypercomparediff3',	''' zo3 hyperto5-3
							hyperhetto5-3
						''','Overlay')

Plotting flatness comparison
For last reflectors
for j in [s3]:
	sh = 3
	shot = str(sh)
	Flow('hypertimeshift'+shot,'vnmosqext t0sumext',
		''' math t0=${SOURCES[1]} output="2*sqrt(t0^2 + (x3)^2/input) - 2*t0"|
		window n1=1 f1=%d n2=1 f2=4
		''' % j)
	Flow('hyperhettimeshift'+shot,'vnmosqhetext t0sumext',
		''' math t0=${SOURCES[1]} output="2*sqrt(t0^2 + (x3)^2/input) - 2*t0"|
		window n1=1 f1=%d n2=1 f2=4
		''' % j)
	Flow('warped'+shot,'zo'+shot+' hypertimeshift'+shot,'datstretch datum=${SOURCES[1]}')
	Flow('warpedhet'+shot,'zo'+shot+' hyperhettimeshift'+shot,'datstretch datum=${SOURCES[1]}')
	Plot('warped'+shot,
	 '''
	 grey transp=y yreverse=y poly=y
	 title="Flattened at %s km (1D)" min1=1.65 max1=1.95 label2=Midpoint unit2=km screenratio=0.5
	 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
	 wherexlabel=top
	 ''' % str(j*0.0101))
	Plot('warpedhet'+shot,
	 '''
	 grey transp=y yreverse=y poly=y
	 title="Flattened at %s km (Proposed)" min1=1.65 max1=1.95 label2=Midpoint unit2=km screenratio=0.5
	 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
	 wherexlabel=top
	 ''' % str(j*0.0101))
	Plot('t0to-'+shot,'t0sumext offset',
		'''
		window n1=1 f1=%d n2=1 f2=4 | scale dscale=2 | cat axis=2 ${SOURCES[1]} order=2,1 | transp | dd type=complex | window |
		graph yreverse=y plotcol=5 plotfat=16 min2=1.65 max2=1.95 screenratio=0.5 dash=1
		axisfat=3 wanttitle=n wantaxis=n
		''' % j)
	Plot('warpedn'+shot,'warped'+shot+' t0to-'+shot,'Overlay')
	Plot('warpedhetn'+shot,'warpedhet'+shot+' t0to-'+shot,'Overlay')
	
Result('warpedhypercompare3','warpedn3 warpedhetn3','TwoRows')

Plotting migrated results comparison
Flow('vold','vnmosq','math output="sqrt(input)" | window n1=1 f1=426')
vold = '2.477,2.973,3.12,3.222,3.382'

Flow('vnew','vnmosqhet','math output="sqrt(input)" | window n1=1 f1=426')
vnew = '2.477,2.974,3.165,3.336,3.693'

Shift the pulse a bit to ensure the correct velocity is applied
Flow('refdiff','t0sum','window n1=1 f1=425 | add scale=2 | spray axis=2 n=201 o=3.2825 d=0.0101 | transp')
Flow('vdiffmodelold','refdiff','unif2 d1=0.004 n1=751 v00=%s | smooth rect1=10' %vold)
Flow('vdiffmodelnew','refdiff','unif2 d1=0.004 n1=751 v00=%s | smooth rect1=10' %vnew)

Flow('oldmig','zotaper vdiffmodelold',' window | mig2 antialias=1.0 vel=${SOURCES[1]}')
Flow('newmig','zotaper vdiffmodelnew',' window | mig2 antialias=1.0 vel=${SOURCES[1]}')

Plot('oldmig',
 '''
 grey transp=y yreverse=y poly=y pclip=99
 title="Migrated diffraction (1D)" min1=0 max1=2 label2=Midpoint unit2=km screenratio=0.75
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=12
 wherexlabel=top
 ''')
Plot('newmig',
 '''
 grey transp=y yreverse=y poly=y pclip=99
 title="Migrated diffraction (Proposed)" min1=0 max1=2 label2=Midpoint unit2=km screenratio=0.75
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=12
 wherexlabel=top
 ''')

Result('migcompare','oldmig newmig','SideBySideAniso')

Focusing measurement
Flow('oldmigfocus','oldmig','window min1=1.65 max1=1.9 | focus dim=2 rect1=10 rect2=3')
Flow('newmigfocus','newmig','window min1=1.65 max1=1.9 | focus dim=2 rect1=10 rect2=3')

Plot('oldmigfocus',
 '''
 grey transp=y yreverse=y poly=y pclip=99
 title="Focus of migrated diffraction (1D)" min1=1.65 max1=1.9 label2=Midpoint unit2=km screenratio=0.55
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
 wherexlabel=top color=j allpos=y
 ''')
Plot('newmigfocus',
 '''
 grey transp=y yreverse=y poly=y pclip=99
 title="Focus of migrated diffraction (Proposed)" min1=1.65 max1=1.9 label2=Midpoint unit2=km screenratio=0.55
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
 wherexlabel=top color=j allpos=y
 ''')

Result('focuscompare','oldmigfocus newmigfocus','TwoRows')

Focusing measurement with envelope
Flow('oldmigenv','oldmig','window min1=1.65 max1=1.9 | envelope')
Flow('newmigenv','newmig','window min1=1.65 max1=1.9 | envelope')
Plot('oldmigenv',
 '''
 grey transp=y yreverse=y poly=y
 title="Focus of migrated diffraction (1D)" min1=1.65 max1=1.9 label2=Midpoint unit2=km screenratio=0.55
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
 wherexlabel=top color=j allpos=y scalebar=y maxval=0.077 clip=0.077
 ''')
Plot('newmigenv',
 '''
 grey transp=y yreverse=y poly=y
 title="Focus of migrated diffraction (Proposed)" min1=1.65 max1=1.9 label2=Midpoint unit2=km screenratio=0.55
 axisfat=3 titlefat=6 titlesz=14 labelfat=6 labelsz=10
 wherexlabel=top color=j allpos=y scalebar=y maxval=0.077 clip=0.077
 ''')

Result('envcompare','oldmigenv newmigenv','TwoRows')

Ray tracing for numerical calculation of the second traveltime derivative
updown2=[1,2,3,4,5]
N2 = len(updown2)-1
xinitial = [4.,4.,4.,4.]
updown2str = ','.join(map(str,updown2)) # convert updown to a string
xinistr = ','.join(map(str,xinitial)) # convert updown to a string

Flow('ray-2','refcut',
	'''isaac2 niter=10 number=%d vstatus=%d debug=n xs=4.3026 xr=4.2426 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s xinitial=%s tol=1e-5''' % (N2,vstat,vstr,updown2str,xrefstr,zrefstr,gxstr,gzstr,xinistr))
Flow('ray-1','refcut',
	'''isaac2 niter=10 number=%d vstatus=%d debug=n xs=4.3026 xr=4.2626 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s xinitial=%s tol=1e-5''' % (N2,vstat,vstr,updown2str,xrefstr,zrefstr,gxstr,gzstr,xinistr))
Flow('ray0','refcut',
	'''isaac2 niter=10 number=%d vstatus=%d debug=n xs=4.3026 xr=4.2826 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s xinitial=%s tol=1e-5''' % (N2,vstat,vstr,updown2str,xrefstr,zrefstr,gxstr,gzstr,xinistr))
Flow('ray+1','refcut',
	'''isaac2 niter=10 number=%d vstatus=%d debug=n xs=4.3026 xr=4.3026 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s xinitial=%s tol=1e-5''' % (N2,vstat,vstr,updown2str,xrefstr,zrefstr,gxstr,gzstr,xinistr))
Flow('ray+2','refcut',
	'''isaac2 niter=10 number=%d vstatus=%d debug=n xs=4.3026 xr=4.3226 velocity=%s layer=%s
	 xref=%s zref=%s xgradient=%s zgradient=%s xinitial=%s tol=1e-5''' % (N2,vstat,vstr,updown2str,xrefstr,zrefstr,gxstr,gzstr,xinistr))

for k in ['-2','-1','0','+1','+2']:
	Plot('ray'+k,
		 '''
		 dd type=complex | window |
		 graph wanttitle=n wantaxis=n yreverse=y min2=0 max2=3 min1=0 max1=6 plotcol=7 plotfat=6 screenht=5.0 screenratio=0.333 yll=3.5 xll=1.5
		 axisfat=3 titlefat=3 titlesz=10 labelfat=3 labelsz=6
		 ''')
Result('dt2dx2','ray-2 ray-1 ray0 ray+1 ray+2 ref','Overlay')

End()

Sripanich et al. 23 Effects of lateral heterogeneity

Figure 13: A zero-offset migrated section for the layered isotropic model. The re-
sultant point diffractor appears to be better focused from the proposed method
(right) than from the regular migration velocity based on 1-D assumption (left).

relationship for a two-layered medium given by equation 43,

∂2t

∂h2
=

∂2t1
∂h2

−
(

∂2t1
∂x1∂h

)2
/(

∂2(t0 + t1)

∂x2
1

)
. (22)

For horizontal homogeneous isotropic sublayers, the pertaining traveltime derivatives
can be expressed as

∂2t1
∂h2

∣∣∣∣
h=0

=
1

D1/W1

=
1

T1V 2
1

, (23)

∂2t1
∂x1∂h

∣∣∣∣
h=0

= − 1

D1/W1

= − 1

T1V 2
1

,

∂2t0
∂x2

1

∣∣∣∣
h=0

=
1

D0/W0

=
1

T0V 2
0

,

∂2t1
∂x2

1

∣∣∣∣
h=0

=
1

D1/W1

=
1

T1V 2
1

,

TCCS

Sripanich et al. 24 Effects of lateral heterogeneity

Figure 14: A focusing comparison of migrated point diffractors for the layered
isotropic model. The proposed method leads to a higher magnitude of the central
focusing at the center and a more symmetric response, which indicates its superior
performance.

TCCS

Sripanich et al. 25 Effects of lateral heterogeneity

where Dk is the thickness of the k-th layer and Vk = 1/Wk denotes its velocity.
Substituting equation 23 into equation 22 gives

∂2t

∂h2

∣∣∣∣
h=0

=
1

T1V 2
1

−
(
− 1

T1V 2
1

)2
/(

1

T0V 2
0

+
1

T1V 2
1

)
,

=
1

T0V 2
0 + T1V 2

1

, (24)

which leads to

V 2
nmo =

[
(T0 + T1)

∂2t

∂h2

∣∣∣∣
h=0

]−1

,

=
T0V

2
0 + T1V

2
1

T0 + T1

. (25)

Equation 25 serves as the basis for computing the effective NMO velocity, which is
similar to the root-mean-square (RMS) velocity in this simple case. Dix-type inversion
in this example follows directly from equation 25, where one seeks to estimate the
velocity at the bottom layer V0 from a measured Vnmo at the surface according to

V 2
0 =

(T0 + T1)V
2
nmo − T1V

2
1

(T0 + T1)− T1

. (26)

Alternative derivations for Dix-type inversion can be done in the phase domain, where
the traveltime and offsets are expressed as functions of ray parameters (Tsvankin,
2012; Sripanich and Fomel, 2016; Koren and Ravve, 2017). Future investigations
are required to establish a Dix-type inversion approach that honors the effects from
lateral heterogeneity based on the result of this work.

Another possible extension of this work is to apply the proposed theory in the
context of velocity anomaly removal similar to Blias (2009a), Takanashi and Tsvankin
(2011), and Takanashi and Tsvankin (2012). In light of our result on the need of a
recursive relationship (equation 12) to collect lateral heterogeneity effects from both
curved interfaces and variable medium parameters, it remains to be investigated how
the contribution from any individual layer with embedded velocity anomaly can be
removed in an accurate and efficient manner.

The proposed method takes into account the effects from lateral heterogeneity by
modifying the second-order traveltime derivative related to NMO velocity (reflection)
or time-migration velocity (diffraction). Therefore, the limit on the validity of the
hyperbolic traveltime assumption in both cases is still enforced. We further discuss
the possibility of extending our framework to higher-order traveltime derivatives in
Appendix D, where the conventional paraxial ray theory is no longer applicable.
A possible 3D extension of the proposed framework is investigated in Appendix E,
where we observe that an additional solve of a linear system of equations at each
interface surface is needed to track the higher number of pertaining parameters in
3D. However, a direct solve of this system is generally not possible due to a smaller

TCCS

Sripanich et al. 26 Effects of lateral heterogeneity

number of equations than unknowns. This problem was conveniently circumvented
in the 2D case due to the smaller number of associated parameter (only one) and the
use of a recursive relationship, which is no longer straightforward to formulate in the
3D case. Consequently, further investigations are required to extend the proposed
framework to work with 3D datasets.

Our method takes into account the first-order effects from lateral heterogeneity
in largely flat subsurface, which ensures that the normal-incidence ray and the image
ray stays close to the reference vertical direction. Consequently, our approach does
not substitute the dip-moveout process (DMO) for handling effects from dipping
reflectors, which becomes prominent as the dip increases. The Gardner continuation
(Fomel, 2014) serves as an alternative means to rid the moveout velocity on its dip
dependency by transforming the prestack data into a special domain.

In our framework, we choose to consider the traveltime expression in the group
domain, where it depends on the medium parameters and the spatial location in
Cartesian coordinates. This choice allows for practical convenience when consider-
ing information at the zero offset and is appropriate for predominantly horizontally
layered media with weak heterogeneity effects such as in land datasets associated
with unconventional reservoirs. An alternative formulation can also be constructed
in the phase domain, which can be advantageous when considering more complex me-
dia with arbitrarily dipping interfaces (Grechka and Tsvankin, 2002; Grechka et al.,
2002).

Finally, we note that the results from this study, coupled with accurate moveout
functional forms (Fomel and Stovas, 2010; Sripanich et al., 2017), may serve as the
basis for possible future improvements of practical moveout inversion techniques that
take into account the lateral heterogeneity effects. Subsequent applications of time-
to-depth conversion methods that also honor lateral heterogeneity can potentially
lead to an improved time-domain imaging workflow and a more accurate subsurface
velocity model efficiently obtained from time processing (Cameron et al., 2007; Li
and Fomel, 2015; Valente et al., 2017; Sripanich and Fomel, 2018). The latter is
especially favorable as it may represent a good starting model for more sophisticated
tomographic or full-waveform inversion techniques and lead to better convergence.

CONCLUSIONS

We have proposed a general framework for evaluating the one-way traveltime deriva-
tives in layered anisotropic media in the presence of weak lateral heterogeneity from
curved reflectors and lateral velocity variations. Relying on the Fermat’s principle,
we show that in 2D media, the effects from lateral heterogeneity in each sublayer gets
accumulated according to a recursive relationship. We specify the expressions for
the second-order traveltime derivatives related to NMO velocity and time-migration
velocity suitable for 2D datadets that honor these effects from lateral heterogeneity.
We subsequently show that the new expressions can lead to improved moveout pre-

TCCS

Sripanich et al. 27 Effects of lateral heterogeneity

dictions and better focused diffraction responses. The results of this study fill in the
missing gap in existing theory and serve as a basis for understanding and quantifying
the first-order effects of lateral heterogeneity on reflection and diffraction traveltimes
in multi-layer anisotropic media. The fundamentals provided in this work is impor-
tant for future design of accurate parameter estimation techniques such as Dix-type
inversion that honor the effects from lateral heterogeneity.

ACKNOWLEDGMENTS

We are grateful to the associate editor, H. Chauris, and the reviewers, I. Ravve and
E. Iversen for constructive comments that help improve the paper. We thank E.
Blias and I. Vasconcelos for helpful discussions. We thank the sponsors of the Texas
Consortium for Computational Seismology (TCCS) and the Rock Seismic Research
Project (ROSE) for financial support. The first author was additionally supported
by the Statoil Fellows Program at the University of Texas at Austin.

TCCS

Sripanich et al. 28 Effects of lateral heterogeneity

APPENDIX A
REVIEW OF REFLECTION AND DIFFRACTION

TRAVELTIME APPROXIMATIONS

The basis of our construction in this paper is the one-way traveltime in general lay-
ered media and its derivatives. In this appendix, we review an important concept
on how this one-way traveltime can be related to two-way reflection and diffraction
traveltimes, which signifies the importance of the presented results. For simplicity,
we only show the expressions in the 2D case.

Reflection traveltime

Reflection traveltimes (moveout) are commonly expressed as a Taylor series of two-
way traveltime squared around zero offset with only even powers (Taner and Koehler,
1969). Assuming pure-mode reflections with source-receiver reciprocity and sym-
metric raypaths between the incident and the reflected waves around zero offset in
1D media, we can construct a two-way reflection traveltime approximation by adding
two one-way traveltime approximations (from −h and +h) as follows (Thomsen, 2014;
Tsvankin, 2012; Sripanich and Fomel, 2016):

2t(h) = 2T + h2

(
∂2t

∂h2

)∣∣∣∣
h=0

+
h4

12

(
∂4t

∂h4

)∣∣∣∣
h=0

+ · · · . (27)

We follow the same notation as in the main text and use T to denote one-way zero-
offset traveltime. Equation (27) can be converted to a more commonly known series
in two-way traveltime squared in terms of full offsets (2h) as follows:

4t2(2h) ≈ 4T 2 + a2(2h)
2 + a4(2h)

4 , (28)

where a2 and a4 are coefficients related to the NMO velocity and the quartic coef-
ficient, respectively. Both parameters can be expressed in terms of the derivative
of one-way traveltime around zero offset as follows (Al-Dajani and Tsvankin, 1998;
Sripanich and Fomel, 2016):

a2 = T
∂2t

∂h2

∣∣∣∣
h=0

, (29)

a4 =
1

16

[(
∂2t

∂h2

)2

+
T

3

∂4t

∂h4

]∣∣∣∣∣
h=0

. (30)

We emphasize that two important assumptions are made in the derivation so far:

1. We only consider pure-mode reflections with source-receiver reciprocity.

2. The incident and reflected raypaths are symmetric around zero offset.

TCCS

Sripanich et al. 29 Effects of lateral heterogeneity

Except for some special configurations, the first assumption is generally absent in
consideration of converted waves and the series of reflection traveltime will also con-
tain terms with odd powers (Tsvankin and Grechka, 2011; Thomsen, 2014; Koren
and Ravve, 2017). On the other hand, the second assumption ensures the absence of
reflection dispersal, which in turn, suggests that zero offset corresponds to the verti-
cal ray. When this assumption does not hold, the fourth-order reflection traveltime
coefficient (a4) becomes more complex than what is shown in equation (30) (Pech
et al., 2003; Koren and Ravve, 2017). Grechka and Tsvankin (1998) emphasized that
reflection dispersal has no effect on NMO velocity related to equation (29) (Hubral
and Krey, 1980). It becomes important only when considering higher-order traveltime
coefficients such as a4 in equation (30).

In this paper, we only utilize the relationship between the reflection traveltime
coefficients (a2) and the second-order derivative of the one-way traveltime of the
fictional normal-incidence ray in equation (29), which is not affected by reflection
dispersal. Therefore, NMO velocity can be computed from

V 2
nmo =

1

a2
, (31)

as shown in equation (6). However, we emphasize the importance of the aforemen-
tioned assumptions and advise careful consideration when extending our framework
to study higher-order reflection traveltime coefficients such as a4.

Diffraction traveltime

As a more fundamental alternative to study seismic responses, one can choose to
consider a reflecting point (scatterer) instead of a reflecting surface because any model
is a superposition of such scatterers. Assuming that the subsurface velocity v is
constant, the total (diffraction) traveltime of the wave traveling in this configuration
is simply a sum of traveltime of the two legs, which can be expressed by the double-
square-root (DSR) equation (Claerbout, 1996):

ts + tr =

√
T̂ 2 +

(
m− h− x0

v

)2

+

√
T̂ 2 +

(
m+ h− x0

v

)2

, (32)

where m denotes midpoint, h denotes half offset, x0 denotes the horizontal coordinate
of the point scatterer, and T̂ is a one-way vertical traveltime from the point scatterer
to the surface. The true location of the point scatterer x0 will also be the same as
the emerging location of the image rays (Hubral, 1977).

In the more general case of varying subsurface velocity, equation (32) becomes
an approximation for diffraction traveltime that is routinely used in prestack time
migration (Yilmaz, 2001). T̂ then denotes the one-way traveltime of the image ray
from the point scatter to the surface and the escape location x0 of the image ray will

TCCS

Sripanich et al. 30 Effects of lateral heterogeneity

generally be different from the true location of the point scatterer in the Cartesian co-
ordinates. The velocity v becomes time-migration velocity Vm, which will be selected
for the best fit traveltime to equation (32).

To further understand equation (32) in heterogeneous media, we follow the deriva-
tion by ? and consider the general one-way traveltime approximation centered around
the image ray from the point scatterer to any surface point x given by,

t = T̂ +
x̂2

2

∂2t

∂x̂2

∣∣∣∣
x̂=0

+
x̂3

6

∂3t

∂x̂3

∣∣∣∣
x̂=0

+O(x̂4) , (33)

where x̂ = x − x0 denotes the distance between the escape location x0 and any sur-
rounding point x on the surface. Note that x̂ functions similarly to h in equation (5)
but has a different meaning than the conventional half offset when considering re-
flection traveltime. The first-order term in equation (33) is always equal to zero
due to the image rays always having zero phase slowness tangent to the surface, or
equivalently to ∂t/∂x̂ = 0 at x̂ = 0. We emphasize the notable presence of possible
third-order term (x̂3). This term can be neglected when x̂ is sufficiently small or
when the medium under consideration provides additional symmetry to the function
of traveltime such as in homogeneous or horizontally layered VTI media, where trav-
eltime varies as an even function around x̂ = 0. Converting equation (33) to a series
in traveltime squared gives

t2 = T̂ 2 + x̂2T̂
∂2t

∂x̂2

∣∣∣∣
x̂=0

+O(x̂3) . (34)

Using equation (34), we can compute the total traveltime from a source at m+ h to
point scatterer and to a receiver at m− h as follows,

ts+ tr =

√
T̂ 2 + (m− h− x0)2T̂

∂2t

∂x̂2

∣∣∣∣
x̂=0

+

√
T̂ 2 + (m+ h− x0)2T̂

∂2t

∂x̂2

∣∣∣∣
x̂=0

+O(x̂3) .

(35)
Equation (35) suggests that equation (32) simply represents a sum of two Taylor
expansions of the one-way traveltime from the point scatterer to the source and
the receiver. Therefore, the migration velocity Vm can be related to the one-way
traveltime derivatives as shown in equation (7). Moreover, our proposed framework
to study the effects of weak lateral heterogeneity on one-way traveltime is applicable
to vm provided that the image ray is assumed to be sufficiently close to the vertical
direction, which is exactly true in the case of 1D layered anisotropic media with
horizontal symmetry planes.

APPENDIX B
DERIVATION OF THE RECURSIVE FORMULA

In this appendix, we provide a detailed derivation of the studied recursive formula
(equation (12)) and discuss a possible extension to evaluate higher-order traveltime

TCCS

Sripanich et al. 31 Effects of lateral heterogeneity

derivatives. We start from the case of two-layer media previously investigated by
Blias (1981), Blyas et al. (1984), Gritsenko (1984), and Goldin (1986) and proceed
to the case of three-layered media to show how the recursion can be established for
multi-layer media.

Two-layer case

Consider the two-layer setup shown in the left plot of Figure 15. In our notation, the
total one-way traveltime is equal to

t = t0(x0,x1(h)) + t1(x1(h),x2(h)) where h = x2 − x0 . (36)

By definition of xk =
(
xk, fk(xk)

)
, we may write equation (36) as

t = t0(x0, x1(h)) + t1(x1(h), x2(h)) where h = x2 − x0 . (37)

We emphasize the simple relationship between x2 and h and differentiating equa-
tion (37) with respect to h to obtain

∂t

∂h
=

∂t1
∂h

+
∂t

∂x1

dx1

dh
, (38)

where the second term on the right-hand side disappear due to Fermat’s principle
(∂t/∂x1 = 0). Therefore, we have

∂t

∂h
=

∂t1
∂h

. (39)

Further differentiating equation (39) with respect to h leads to

∂2t

∂h2
=

∂2t1
∂h2

+
∂2t1
∂x1∂h

(
dx1

dh

)
. (40)

To evaluate the derivative in equation (40), we need dx1/dh, which can be found from
differentiating the Fermat’s condition (∂t/∂x1 = 0) with respect to h. This leads to

∂2t1
∂x1∂h

+
∂2t

∂x2
1

(
dx1

dh

)
= 0 , (41)

and therefore,

dx1

dh
= −

(
∂2t1
∂x1∂h

)/(
∂2t

∂x2
1

)
= −

(
∂2t1
∂x1∂h

)/(
∂2(t0 + t1)

∂x2
1

)
. (42)

Substituting equation (42) into equation (40) leads to the final expression for the
two-layer case studied by Blias (1981), Blyas et al. (1984), Gritsenko (1984), and
Goldin (1986):

∂2t

∂h2
=

∂2t1
∂h2

−
(

∂2t1
∂x1∂h

)2
/(

∂2(t0 + t1)

∂x2
1

)
, (43)

which relates the second-order total traveltime derivative at the surface (∂2t/∂h2) to
that of the interface below (∂2t1/∂h

2). All pertaining derivatives in equation (43) can
be found from equation (15) in the main text that include the first-order effects from
lateral heterogeneity.

TCCS

Sripanich et al. 32 Effects of lateral heterogeneity

x0 = (x0, f0 (x0))

x1
w0

w1

x2 = (x2, f2 (x2))

x0 = (x0, f0 (x0))

x1

x2

w0

w1

w2

x3 = (x3, f3 (x3))

Two-layered Three-layered

Figure 15: The ray configurations two- and three-layered media as the basis for
relating the second-order traveltime derivatives at different interfaces.

Three-layer case

Let us now turn to the right plot of Figure 15, which depicts the situation where we
have a three-layered medium and the total traveltime is given by

t = t0(x0,x1(h)) + t1(x1(h),x2(h)) + t2(x2(h),x3(h)) where h = x3 − x0 . (44)

We can proceed along the same line of argument as in the two-layer case and differ-
entiating the total time with respect to h, which leads to

∂t

∂h
=

∂t2
∂h

+
2∑

k=1

∂t

∂xk

∂xk

∂h
. (45)

Again, ∂t/∂xk = 0 due to the Fermat’s principle, we then have

∂t

∂h
=

∂t2
∂h

. (46)

We further differentiate the expression with respect to h and arrive at

∂2t

∂h2
=

∂2t2
∂h2

+
∂2t2
∂x2∂h

(
dx2

dh

)
. (47)

To find dx2/dh, we differentiate the Fermat’s conditions (∂t/∂xk = 0 for k ∈ {1, 2})
in a similar manner as in the two-layer case.

TCCS

Sripanich et al. 33 Effects of lateral heterogeneity

1. At the first interface (k = 1), the condition ∂t/∂x1 = ∂(t0 + t1)/∂x1 = 0 leads
to

∂2(t0 + t1)

∂x2
1

(
dx1

dh

)
+

∂2t1
∂x1∂x2

(
dx2

dh

)
= 0 (48)

2. At the second interface (k = 2), the condition ∂t/∂x2 = ∂(t1 + t2)/∂x2 = 0
leads to

∂2t1
∂x1∂x2

(
dx1

dh

)
+

∂2(t1 + t2)

∂x2
2

(
dx2

dh

)
+

∂2t2
∂x2∂h

= 0 (49)

At this stage, we can see that equations (48) and (49) contain two unknown variables
dx1/dh and dx2/dh to be solved for. We propose to look at this problem in a specific
way that will facilitate an extension to the general multi-layer case. We first rearrange
equation (48) into the following form

r =

(
dx1

dh

)/(
dx2

dh

)
= −

(
∂2t1

∂x1∂x2

)/(
∂2(t0 + t1)

∂x2
1

)
, (50)

which is reminiscent of equation (42) for the two-layer case when x2 = h + const.
Substituting equation (50) into equation (49), we arrive at

dx2

dh
= −

(
∂2t2
∂x2∂h

)/(
r

∂2t1
∂x1∂x2

+
∂2(t1 + t2)

∂x2
2

)
, (51)

which can be substituted into equation (47) to evaluate the desired second-order total
traveltime derivative.

Multi-layer case

Looking closer at equations (48) and (49), we can observe that for each condition at
the k-th interface, there are generally three terms:

∂2tk−1

∂xk−1∂xk

(
dxk−1

dh

)
+

∂2(tk−1 + tk)

∂x2
k

(
dxk

dh

)
+

∂2tk
∂xk∂xk+1

(
dxk+1

dh

)
= 0 , (52)

where k = 1, . . . , n for a medium with n + 1 layers. The source at x0 is fixed and
therefore, dx0/dh = 0. Moreover, the receiver is located at xn+1 = h + x0, which
leads to dxn+1/dh = 1. Therefore, we can derive the following set of equations in the
general case of multi-layer media:

∂2(t0 + t1)

∂x2
1

(
dx1

dh

)
+

∂2t1
∂x1∂x2

(
dx2

dh

)
= 0 , (53)

∂2t1
∂x1∂x2

(
dx1

dh

)
+

∂2(t1 + t2)

∂x2
2

(
dx2

dh

)
+

∂2t2
∂x2∂x3

(
dx3

dh

)
= 0 ,

...

∂2tn−1

∂xn−1∂xn

(
dxn−1

dh

)
+

∂2(tn−1 + tn)

∂x2
n

(
dxn

dh

)
+

∂2tn
∂xn∂h

= 0 ,

TCCS

Sripanich et al. 34 Effects of lateral heterogeneity

which leads to the recursive formula

rk =

(
dxk

dh

)/(
dxk+1

dh

)
= −

(
∂2tk

∂xk∂xk+1

)/(
rk−1

∂2tk−1

∂xk−1∂xk

+
∂2(tk−1 + tk)

∂x2
k

)
,

(54)
where r0 = 0 due to dx0/dh = 0. This newly developed equation is an exact extension
of the two-layer case result (equation (42)) to the multi-layer case and is similar to
equation (12) in the main text.

APPENDIX C
A SUMMATION SCHEME TO ACCUMULATE

HETEROGENEITY EFFECTS

As opposed to the exact recursion proposed in this study, a simpler summation scheme
was previously used to accumulate the effects from heterogeneity. A review of this
concept can be found in Blias (2006) and we briefly summarize the essentials here.
One way to interpret this summation process is to examine one interface at a time and
assume that apart from the considered interface, other intermediate layers between the
source at larger depth and the receiver at the surface are laterally homogeneous (1D).
Under this assumption, one can evaluate the contribution from lateral heterogeneity
for this particular interface and its two adjacent layers using the result from the two-
layer case (equation (43)). To further describe this process, we first assume that all
sublayers are homogeneous isotropic similarly to what was done by Blias and consider
only one non-flat interface at i-th. Therefore, we have

∂2t

∂h2
=

∂2τi
∂h2

−
(

∂2τi
∂xi∂h

)2
/(

∂2(τi−1 + τi)

∂x2
i

)
, (55)

where τ0 =
∑i−1

k=0 tk and τ1 =
∑n

k=i tk denote the effective time below and above the
non-flat i-th interface. To evaluate pertaining derivatives, we use equation (15) for
general media in the main text and focus only on the effects from curved interfaces
at the moment by setting W ′ = W ′′ = 0 to exclude the effects from lateral velocity
variations. Subsequently, we can derive the following expressions:

∂2τi
∂h2

∣∣∣∣
h=0

=
1∑n

k=i Dk/Wk

=
1

A
, (56)

∂2τi
∂xi∂h

∣∣∣∣
h=0

= − 1∑n
k=i Dk/Wk

= − 1

A
,

∂2τi−1

∂x2
i

∣∣∣∣
h=0

=
1∑i−1

k=0 Dk/Wk

− F ′′
i Wi−1 =

1

B
− F ′′

i Wi−1 ,

∂2τi
∂x2

i

∣∣∣∣
h=0

=
1∑n

k=i Dk/Wk

+ F ′′
i Wi =

1

A
+ F ′′

i Wi ,

TCCS

Sripanich et al. 35 Effects of lateral heterogeneity

where Wk is the slowness for each isotropic sublayer k and Dk is its thickness. We also
introduce dummy variables A and B to facilitate subsequent derivation. Substituting
equation (56) into equation (55) leads to

∂2t

∂h2

∣∣∣∣
h=0

=

(
1

A+B

)(
1 + F ′′

i (Wi −Wi−1)B

1 + F ′′
i (Wi −Wi−1)AB/(A+B)

)
(57)

where A + B =
∑n

k=0Dk/Wk = TV 2
rms with T being the total one-way zero-offset

traveltime in the 1D medium and Vrms being the corresponding root-mean-square
velocity. Therefore, the first term on the right-hand side of equation (57) represents
the usual second-order one-way traveltime derivative at zero offset in the 1D medium,
whereas the second term is the contribution from lateral heterogeneity. When F ′′

i = 0
for flat i-th interface, this second term becomes unity.

To further simplify equation (57), it can be linearized with respect to F ′′, which
results in

∂2t

∂h2

∣∣∣∣
h=0

≈
(

1

A+B

)(
1 +

F ′′
i (Wi −Wi−1)B

2

A+B

)
. (58)

Based on the result shown in equation (58), the total contribution from lateral het-
erogeneity due to various non-flat interfaces can be expressed as a summation on the
term with F ′′ rather than being computed through a recursive evaluation as proposed
in this study. Equation (58) is similar to equation 5 in Blias (2009b). For the effects
from lateral velocity change (W ′′), a similar derivation procedure can be adopted.
Finally, we emphasize that due to the steps taken in the derivation of equation (58),
the terms involving F ′W ′ apparent in the general expressions in equation (15) are
missing. These terms are also absent from the final result shown in equation 1 of
Blias (2009b).

APPENDIX D
POSSIBLE EXTENSION TO HIGHER-ORDER

DERIVATIVES

In this section, we discuss a possibility of extending our framework to evaluate higher-
order one-way traveltime derivatives up to the fourth order. As reviewed in Appendix
A, the fourth-order term is particularly important because it can be related to the
quartic moveout coefficients for an estimation of anisotropy from reflection travel-
time. Nonetheless, we emphasize the possible complications from reflection dispersal
that may arise in the study of fourth-order traveltime derivatives for nonhyperbolic
moveout (e.g., Pech et al., 2003).

Under similar assumptions used by equation (30), let us consider the two-layer
model shown in the left plot of Figure 15 and differentiate the total traveltime

TCCS

Sripanich et al. 36 Effects of lateral heterogeneity

(equaiton (37)) with respect to h up to the fourth order, which gives

∂t

∂h
=

∂t1
∂h

+
∂t

∂x1

dx1

dh
=

∂t1
∂h

, (59)

∂2t

∂x2
2

=
∂2t1
∂h2

+

(
dx1

dh

) (
∂2t1
∂x1∂h

)
, (60)

∂3t

∂x3
2

=
∂3t1
∂h3

+ 2

(
dx1

dh

) (
∂3t1

∂x1∂h2

)
+

(
dx1

dh

)2 (
∂3t1
∂x2

1∂h

)

+

(
d2x1

dh2

) (
∂2t1
∂x1∂h

)
, (61)

∂4t

∂x4
2

=
∂4t1
∂h4

+ 3

(
dx1

dh

) (
∂4t1

∂x1∂h3

)
+ 3

(
dx1

dh

)2 (
∂4t1

∂x2
1∂h

2

)

+ 3

(
dx1

dh

)(
d2x1

dh2

) (
∂3t1
∂x2

1∂h

)
+ 3

(
d2x1

dh2

) (
∂3t1

∂x1∂h2

)

+

(
dx1

dh

)3 (
∂4t1
∂x3

1∂h

)
+

(
d3x1

dh3

) (
∂2t1
∂x1∂h

)
, (62)

where we highlight the terms that have to be computed recursively for multi-layer me-
dia. These include additional second- (d2x1/dh

2) and third-order derivatives (d3x1/dh
3).

In principle, one may therefore, with proper care, further differentiating the Fermat’s
conditions at different interfaces to obtain the required recursive formulas along the
same line as what we did in the derivation of equation (54). An approximation in
the same manner as Blias (2006) suitable for the second-order traveltime derivative
mentioned in Appendix C may lead to more simplified and manageable expressions.

The one-way traveltime derivatives in each layer that include the effects of lat-
eral heterogeneity can be straightforwardly computed using the current framework
(equations (4), (13), and (14)) and we list them here for future references. We limit
our consideration for the derivatives of F and W up to the second order in spatial
derivatives. These following expressions must be used in conjunction with the exact
or approximated recursive formulas that take into account higher-order terms to ac-
cumulate the effects of lateral heterogeneity from all layers on reflection or diffraction

TCCS

Sripanich et al. 37 Effects of lateral heterogeneity

traveltime. Parameters related to the third-order traveltime derivatives include

∂3tk
∂x3

k

∣∣∣∣
h=0

=
∂3Tk

∂x3
k

∣∣∣∣
h=0

+H4 , (63)

∂3tk
∂x2

k∂xk+1

∣∣∣∣
h=0

=
∂3Tk

∂x2
k∂xk+1

∣∣∣∣
h=0

+H5 ,

∂3tk
∂xk∂x2

k+1

∣∣∣∣
h=0

=
∂3Tk

∂xk∂x2
k+1

∣∣∣∣
h=0

+H6 ,

∂3tk
∂x3

k+1

∣∣∣∣
h=0

=
∂3Tk

∂x3
k+1

∣∣∣∣
h=0

+H7 ,

where we use k as a dummy index and the heterogeneous terms are given by

H4 = W ′′
k F

′
k +

3W ′
k

2

(
1

Fk − Fk+1

+ F ′′
k

)
− 3WkF

′
k

(Fk − Fk+1)2
, (64)

H5 =
W ′′

k

3
(F ′

k − F ′
k+1)−

W ′
k

2

(
1

Fk − Fk+1

− F ′′
k

)
+

Wk(2F
′
k + F ′

k+1)

(Fk − Fk+1)2
,

H6 =
W ′′

k

3
(F ′

k − F ′
k+1)−

W ′
k

2

(
1

Fk − Fk+1

− F ′′
k+1

)
−

Wk(F
′
k + 2F ′

k+1)

(Fk − Fk+1)2
,

H7 = −W ′′
k F

′
k+1 +

3W ′
k

2

(
1

Fk − Fk+1

− F ′′
k+1

)
+

3WkF
′
k+1

(Fk − Fk+1)2
.

Parameters related to the fourth-order traveltime derivatives include

∂4tk
∂x4

k

∣∣∣∣
h=0

=
∂4Tk

∂x4
k

∣∣∣∣
h=0

+H8 , (65)

∂4tk
∂x3

k∂xk+1

∣∣∣∣
h=0

=
∂4Tk

∂x3
k∂xk+1

∣∣∣∣
h=0

+H9 ,

∂4tk
∂x2

k∂x
2
k+1

∣∣∣∣
h=0

=
∂4Tk

∂x2
k∂x

2
k+1

∣∣∣∣
h=0

+H10 ,

∂4tk
∂xk∂x3

k+1

∣∣∣∣
h=0

=
∂4Tk

∂xk∂x3
k+1

∣∣∣∣
h=0

+H11 ,

∂4tk
∂x4

k+1

∣∣∣∣
h=0

=
∂4Tk

∂x4
k+1

∣∣∣∣
h=0

+H12 ,

TCCS

Sripanich et al. 38 Effects of lateral heterogeneity

where the heterogeneous terms are given by

H8 = 2W ′′
k

(
1

Fk − Fk+1

+ F ′′
k

)
− 6W ′

kF
′
k

(Fk − Fk+1)2
(66)

− 6WkF
′′
k

(Fk − Fk+1)2
+

12WkF
′2
k

(Fk − Fk+1)3
,

H9 = −W ′′
k

2

(
1

Fk − Fk+1

− F ′′
k

)
+

3W ′
k(F

′
k + F ′

k+1)

2(Fk − Fk+1)2

−
6WkF

′
k(F

′
k + F ′

k+1)

(Fk − Fk+1)3
+

3WkF
′′
k

(Fk − Fk+1)2
,

H10 =
W ′′

k (F
′′
k − F ′′

k+1)

3
+

W ′
k(F

′
k − F ′

k+1)

(Fk − Fk+1)2

+
2Wk(F

′2
k + 4F ′

kF
′
k+1 + F ′2

k+1)

(Fk − Fk+1)3
−

Wk(F
′′
k − F ′′

k+1)

(Fk − Fk+1)2
,

H11 = −W ′′
k

2

(
1

Fk − Fk+1

+ F ′′
k+1

)
−

3W ′
k(F

′
k + F ′

k+1)

2(Fk − Fk+1)2

−
6WkF

′
k+1(F

′
k + F ′

k+1)

(Fk − Fk+1)3
−

3WkF
′′
k+1

(Fk − Fk+1)2
,

H12 = 2W ′′
k

(
1

Fk − Fk+1

− F ′′
k+1

)
+

6W ′
kF

′
k+1

(Fk − Fk+1)2

+
6WkF

′′
k+1

(Fk − Fk+1)2
+

12WkF
′2
k+1

(Fk − Fk+1)3
.

APPENDIX E
POSSIBLE EXTENSION TO 3D

In this section, we discuss a possibility of extending the recursive formulation for 2D
media in Appendix B to 3D media.

Two-layer case

Let us first consider the two-layer setup. In our notation, the total one-way traveltime
in a 3D medium is equal to

t = t0(x0, y0, x1(hx, hy), y1(hx, hy)) + t1(x1(hx, hy), y1(hx, hy), x2(hx), y2(hy)) , (67)

TCCS

Sripanich et al. 39 Effects of lateral heterogeneity

where hx = x2−x0 and hy = y2−y0. Equation (67) is the 3D version of equation (37).
We can proceed along the same line as before and differentiate equation (67) to obtain

∂2t

∂h2
x

=
∂2t1
∂h2

x

+
∂2t1

∂hx∂x1

∂x1

∂hx

+
∂2t1

∂hx∂y1

∂y1
∂hx

, (68)

∂2t

∂h2
y

=
∂2t1
∂h2

y

+
∂2t1

∂hy∂x1

∂x1

∂hy

+
∂2t1

∂hy∂y1

∂y1
∂hy

,

∂2t

∂hx∂hy

=
∂2t1

∂hx∂hy

+
∂2t1

∂hx∂x1

∂x1

∂hy

+
∂2t1

∂hx∂y1

∂y1
∂hy

,

=
∂2t1

∂hx∂hy

+
∂2t1

∂hy∂x1

∂x1

∂hx

+
∂2t1

∂hy∂y1

∂y1
∂hx

.

We can see from equation equation (68) that for 3D media, we need to find four
derivatives (as opposed to only one in 2D media) in order to relate the traveltime
derivatives from one surface to another. To find these four derivatives including
∂x1/∂hx, ∂x1/∂hy, ∂y1/∂hx, and ∂y1/∂hy, we differentiate the Fermat’s condition for
3D medium:

∂t

∂x1

=
∂t

∂y1
= 0 , (69)

with respect to hx and hy, which leads to the following four conditions:

∂2t

∂x2
1

∂x1

∂hx

+
∂2t

∂x1∂y1

∂y1
∂hx

+
∂2t1

∂x1∂hx

= 0 , (70)

∂2t

∂x2
1

∂x1

∂hy

+
∂2t

∂x1∂y1

∂y1
∂hy

+
∂2t1

∂x1∂hy

= 0 ,

∂2t

∂x1∂y1

∂x1

∂hx

+
∂2t

∂y21

∂y1
∂hx

+
∂2t1

∂y1∂hx

= 0 ,

∂2t

∂x1∂y1

∂x1

∂hy

+
∂2t

∂y21

∂y1
∂hy

+
∂2t1

∂y1∂hy

= 0 .

Equation (70) represents a linear system of four equations to be solved for four un-
known derivatives: ∂x1/∂hx, ∂x1/∂hy, ∂y1/∂hx, and ∂y1/∂hy. This is different from
equation (42) for the case of 2D media, where we do not need to solve an additional
linear system.

TCCS

Sripanich et al. 40 Effects of lateral heterogeneity

Multi-layer case

Turning to the 3D multi-layer case with n+ 1 layers, we have

∂2t

∂h2
x

=
∂2tn
∂h2

x

+
∂2tn

∂hx∂xn

∂xn

∂hx

+
∂2tn

∂hx∂yn

∂yn
∂hx

, (71)

∂2t

∂h2
y

=
∂2tn
∂h2

y

+
∂2tn

∂hy∂xn

∂xn

∂hy

+
∂2tn

∂hy∂yn

∂yn
∂hy

,

∂2t

∂hx∂hy

=
∂2tn

∂hx∂hy

+
∂2tn

∂hx∂xn

∂xn

∂hy

+
∂2tn

∂hx∂yn

∂yn
∂hy

,

=
∂2tn

∂hx∂hy

+
∂2tn

∂hy∂xn

∂xn

∂hx

+
∂2tn

∂hy∂yn

∂yn
∂hx

,

where we need to find ∂xn/∂hx, ∂xn/∂hy, ∂yn/∂hx, and ∂yn/∂hy from differentiating
the Fermat’s principle similar to the previous 2D case. The general form of the linear
system of equations at the k-th interface can be written as

0 =
∂2tk−1

∂xk−1∂xk

(
∂xk−1

∂hx

)
+

∂2tk−1

∂yk−1∂xk

(
∂yk−1

∂hx

)
+ (72)

∂2(tk−1 + tk)

∂x2
k

(
∂xk

∂hx

)
+

∂2(tk−1 + tk)

∂xk∂yk

(
∂yk
∂hx

)
+

∂2tk
∂xk∂xk+1

(
∂xk+1

∂hx

)
+

∂2tk
∂xk∂yk+1

(
∂yk+1

∂hx

)
,

0 =
∂2tk−1

∂xk−1∂xk

(
∂xk−1

∂hy

)
+

∂2tk−1

∂yk−1∂xk

(
∂yk−1

∂hy

)
+

∂2(tk−1 + tk)

∂x2
k

(
∂xk

∂hy

)
+

∂2(tk−1 + tk)

∂xk∂yk

(
∂yk
∂hy

)
+

∂2tk
∂xk∂xk+1

(
∂xk+1

∂hy

)
+

∂2tk
∂xk∂yk+1

(
∂yk+1

∂hy

)
,

0 =
∂2tk−1

∂xk−1∂yk

(
∂xk−1

∂hx

)
+

∂2tk−1

∂yk−1∂yk

(
∂yk−1

∂hx

)
+

∂2(tk−1 + tk)

∂xk∂yk

(
∂xk

∂hx

)
+

∂2(tk−1 + tk)

∂y2k

(
∂yk
∂hx

)
+

∂2tk
∂yk∂xk+1

(
∂xk+1

∂hx

)
+

∂2tk
∂yk∂yk+1

(
∂yk+1

∂hx

)
,

0 =
∂2tk−1

∂xk−1∂yk

(
∂xk−1

∂hy

)
+

∂2tk−1

∂yk−1∂yk

(
∂yk−1

∂hy

)
+

∂2(tk−1 + tk)

∂xk∂yk

(
∂xk

∂hy

)
+

∂2(tk−1 + tk)

∂y2k

(
∂yk
∂hy

)
+

∂2tk
∂yk∂xk+1

(
∂xk+1

∂hy

)
+

∂2tk
∂yk∂yk+1

(
∂yk+1

∂hy

)
,

TCCS

Sripanich et al. 41 Effects of lateral heterogeneity

where k = 1, . . . , n for a medium with n+1 layers. The source at (x0, y0) is fixed and
therefore, ∂x0/∂hx = ∂x0/∂hy = ∂y0/∂hx = ∂y0/∂hy = 0. Moreover, the receiver is
located at (xn+1, yn+1) = (hx+x0, hy+y0), which leads to ∂xn+1/∂hx = ∂yn+1/∂hy = 1
and ∂yn+1/∂hx = ∂xn+1/∂hy = 0.

Looking closer at equation (72), we can see that at the first interface (k = 1),
we have four equations with eight unknowns: ∂x1/∂hx, ∂x1/∂hy, ∂y1/∂hx, ∂y1/∂hy,
∂x2/∂hx, ∂x2/∂hy, ∂y2/∂hx, and ∂y2/∂hy, which is different from the two-layer case
in equation (70) that only has four unknowns. In our previous consideration of 2D
media (Appendix B), we show that this problem can be circumvented by considering
the ratio rk (equation (54)) and formulating a recursive formula. However, it is
not immediately apparent how the same strategy can be applied to the system of
equations (72) for the 3D media. Therefore, future investigations are required to
properly handle this problem and come up with an efficient implementation scheme
to analyze influences from lateral heterogeneity on time-processing parameters in 3D
media. For example, we may choose to adopt the same strategy as in Appendix
D that would allows us to rely on equation (70) and approximately sum individual
contributions. Finally, we note that the pertaining one-way traveltime derivatives in
each layer — another ingredient apart from the recursive formula— can simply be
obtained by extending equations (4), (13), and (14) to 3D to also account for the y-
direction.

TCCS

Sripanich et al. 42 Effects of lateral heterogeneity

REFERENCES

Al-Dajani, A., and I. Tsvankin, 1998, Non-hyperbolic reflection moveout for horizon-
tal transverse isotropy: Geophysics, 63, no. 5, 1738–1753.

Blias, E., 1981, Approximation for a CMP traveltime function for a stratified medium
with curvilinear interfaces and variable bed velocities: Soviet Geology and Geo-
physics, 22, no. 11, 123–131.

——–, 2006, Some kinematic problems for layered media with shallow velocity anoma-
lies: Russian Geology and Geophysics, 47, no. 5, 587–603.

——–, 2009a, Long-offset NMO approximatiosn for a layered VTI model: Model
study: 79th Annual International Meeting Expanded Abstracts, Society of Explo-
ration Geophysicists, 3745–3748.

——–, 2009b, Stacking velocities in the presence of overburden velocity anomalies:
Geophysical Prospecting, 57, 323–341.

Blias, E., and S. Gritsenko, 2003, Stacking velocities for different offsets in the medium
with laterally inhomogeneous layers: 73th Annual International Meeting Expanded
Abstracts, Society of Exploration Geophysicists, 2160–2163.

Blias, E., and V. Khatchatran, 2003, Optimization approach to traveltime inver-
sion for a medium with laterally inhomogeneous curvilinear layers: 73th Annual
International Meeting Expanded Abstracts, Society of Exploration Geophysicists,
670–673.

Blyas, E., S. A. Gritsenko, and V. S. Chernjak, 1984, Time field derivatives in strat-
ified media: Soviet Geology and Geophysics, 25, no. 5, 75–81.

Buland, A., O. Kolbjørnsen, and A. J. Carter, 2011, Bayesian dix inversion: Geo-
physics, 76, no. 2, R15–R22.

Cameron, M. K., S. B. Fomel, and J. A. Sethian, 2007, Seismic velocity estimation
from time migration: Inverse Problems, 23, 1329–1369.

Chernjak, V. S., and S. A. Gritsenko, 1979, Interpretation of effective common-depth-
point parameters for a spatial system of homogeneous beds with curved boundaries:
Soviet Geology and Geophysics, 20, 91–98.

Claerbout, J., 1996, Basic Earth Imaging. (http://sepwww.stanford.edu/sep/prof/bei11.2010.pdf).
Fomel, S., 1994, Recurrent formulas for derivatives of a CDP travel-time curve: Rus-
sian Geology and Geophysics, 35, no. 2, 118–126.

——–, 2014, Transforming prestack seismic data by gardner continuation: 84th An-
nual International Meeting Expanded Abstracts, Society of Exploration Geophysi-
cists, 4643–4649.

Fomel, S., and V. Grechka, 2001, Nonhyperbolic reflection moveout of P-waves: An
overview and comparison of reasons, in CWP-372.

Fomel, S., E. Landa, and M. T. Taner, 2007, Poststack velocity analysis by separation
and imaging of seismic diffractions: Geophysics, 72, no. 6, U89–U94.

Fomel, S., and A. Stovas, 2010, Generalized nonhyperbolic moveout approximation:
Geophysics, 75, no. 2, U9–U18.

Goldin, S. V., 1986, Seismic Traveltime Inversion: Society of Exploration Geophysi-
cists.

Grechka, V., A. Pech, and I. Tsvankin, 2002, P-wave stacking-velocity tomography

TCCS

Sripanich et al. 43 Effects of lateral heterogeneity

for VTI media: Geophysical Prospecting, 50, 151–168.
Grechka, V., and I. Tsvankin, 1998, 3-D description of normal moveout in anisotropic
inhomogeneous media: Geophysics, 63, no. 3, 1079–1092.

——–, 1999, 3-D moveout inversion in azimuthally anisotropic media with lateral
velocity variation: Theory and a case study: Geophysics, 64, no. 4, 1202–1218.

——–, 2002, NMO velocity surfaces and Dix-type formulas in anisotropic heteroge-
neous media: Geophysics, 67, 939–951.

Gritsenko, S. A., 1984, Time field derivatives: Soviet Geology and Geophysics, 25,
103–109.

——–, 2013, Imaging of Geological Sections and Velocity Estimation by Common
Depth Point: VSEGEI Press. (in Russian).

Gritsenko, S. A., and V. S. Chernjak, 2001, Linearized traveltime inversion of reflec-
tions from the bottom of a layer with laterally variable interval velocity: Geofizika,
19–24.

Hubral, P., 1977, Time migration—some ray theoretical aspects: Geophysical
Prospecting, 25, 738–745.

——–, 1983, Computing true amplitude reflections in a laterally inhomogeneous earth:
Geophysics, 48, 1051–1062.

Hubral, P., and T. Krey, 1980, Interval Velocities from Seismic Reflection Time Mea-
surements: Society of Exploration Geophysicists.

Iversen, E., M. Tygel, B. Ursin, and M. V. de Hoop, 2012, Kinematic time migration
and demigration of reflections in pre-stack seismic data: Geophys. J. Int., 189,
1635–1666.

Jones, L. E. A., and H. F. Wang, 1981, Ultrasonic velocities in cretaceous shales from
the williston basin: Geophysics, 46, 288–297.

Koren, Z., and I. Ravve, 2006, Constrained Dix inversion: Geophysics, 71, no. 6,
R113–R130.

——–, 2017, Normal moveout coefficients for horizontally layered triclinic media:
Geophysics, 82, no. 4, WA119–WA145.

Krey, T., 1976, Computation of interval velocities from common reflection point move-
out times for n layers with arbitrary dips and curvatures in three dimensions when
assuming small shot-geophone distances: Geophysical Prospecting, 24, 91–111.

Li, S., and S. Fomel, 2015, A robust approach to time-to-depth conversion and in-
terval velocity estimation from time migration in the presence of lateral velocity
variations: Geophysical Prospecting, 63, 315–337.

Lynn, W. S., and J. F. Claerbout, 1982, Velocity estimation in laterally varying
media: Geophysics, 47, no. 6, 884–897.

Pech, A., and I. Tsvankin, 2004, Quartic moveout coefficient for a dipping azimuthally
anisotropic layer: Geophysics, 69, no. 3, 699–707.

Pech, A., I. Tsvankin, and V. Grechka, 2003, Quartic moveout coefficient: 3D de-
scription and application to tilted TI media: Geophysics, 68, no. 5, 1600–1610.

Reshef, M., and E. Landa, 2009, Post-stack velocity analysis in the dip-angle domain
using diffractions: Geophysical Prospecting, 57, no. 5, 811–821.

Schleicher, J., M. Tygel, and P. Hubral, 2007, Seismic True-Amplitude Imaging:
Society of Exploration Geophysicists.

TCCS

Sripanich et al. 44 Effects of lateral heterogeneity

Sripanich, Y., and S. Fomel, 2014, Two-point seismic ray tracing in layered media
useing bending: 84th Annual International Meeting Expanded Abstracts, Society
of Exploration Geophysicists, 3371–3376.

——–, 2015, On anelliptic approximations for qP velocities in TI and orthorhombic
media: Geophysics, 80, no. 5, C89–C105.

——–, 2016, Theory of interval traveltime parameter estimation in layered anisotropic
media: Geophysics, 81, no. 5, C253–C263.

——–, 2018, Fast time-to-depth conversion and interval velocity estimation in the
case of weak lateral variations: Geophysics, 83, no. 3, S227–S235.

Sripanich, Y., S. Fomel, A. Stovas, and Q. Hao, 2017, 3D generalized nonhyper-
boloidal moveout approximation: Geophysics, 82, no. 2, C49–C59.

Takanashi, M., and I. Tsvankin, 2011, Correction for the influence of velocity lenses
on nonhyperbolic moveout inversion for VTI media: Geophysics, 76, no. 3, WA13–
WA21.

——–, 2012, Moveout analysis of wide-azimuth data in the presence of lateral velocity
variation: Geophysics, 77, no. 3, U49–U62.

Taner, M. T., and F. Koehler, 1969, Velocity spectra – Digital computer derivation
and applications of velocity functions: Geophysics, 34, 859–881.

Thomsen, L., 2014, Understanding Seismic Anisotropy in Exploration and Exploita-
tion, 2 ed.: Society of Exploration Geophysicists and European Association of
Geoscientists and Engineers.

Tsvankin, I., 2012, Seismic Signatures and Analysis of Reflection Data in Anisotropic
Media: Society of Exploration Geophysicists.

Tsvankin, I., and V. Grechka, 2011, Seismology of Azimuthally Anisotropic Media
and Seismic Fracture Characterization: Society of Exploration Geophysicists.

Ursin, B., and A. Stovas, 2006, Traveltime approximations for a layered transversely
isotropic medium: Geophysics, 71, no. 2, D23–D33.

Valente, L. S., H. B. Santos, J. C. Costa, and J. Schleicher, 2017, Time-to-depth
conversion and velocity estimation by image-wavefront propagation: Geophysics,
82, no. 6, U75–U85.

Vernik, L., and X. Liu, 1997, Velocity anisotropy in shales: A petrophysical study:
Geophysics, 62, 521–532.

Wang, Z., 2002, Seismic anisotropy in sedimentary rocks, Part 2: Laboratory data:
Geophysics, 67, 1423–1440.

Yilmaz, O., 2001, Seismic data analysis, 2 ed.: Society of Exploration Geophysicists.

TCCS

