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ABSTRACT

Seismic data are often inadequately or irregularly sampled along spatial axes.
Irregular sampling can produce artifacts in seismic imaging results. We present
a new approach to interpolate aliased seismic data based on adaptive prediction-
error filtering (PEF) and regularized nonstationary autoregression. Instead of
cutting data into overlapping windows (patching), a popular method for handling
nonstationarity, we obtain smoothly nonstationary PEF coefficients by solving a
global regularized least-squares problem. We employ shaping regularization to
control the smoothness of adaptive PEFs. Finding the interpolated traces can
be treated as another linear least-squares problem, which solves for data values
rather than filter coefficients. Compared with existing methods, the advantages of
the proposed method include an intuitive selection of regularization parameters
and fast iteration convergence. Benchmark synthetic and field data examples
show that the proposed technique can successfully reconstruct data with deci-
mated or missing traces.

INTRODUCTION

The regular and fine sampling along the time axis is common, whereas good spatial
sampling is often more expensive or prohibitive and therefore is the main bottleneck
for seismic resolution. Too large a spatial sampling interval may lead to aliasing
problems that adversely affect the resolution of subsurface images. An alternative to
expensive dense spatial sampling is interpolation of seismic traces. One important
approach to trace interpolation is prediction interpolating methods (Spitz, 1991),
which use low-frequency non-aliased data to extract antialiasing prediction-error fil-
ters (PEFs) and then interpolates high frequencies beyond aliasing. Claerbout (1992)
extends Spitz’s method using PEFs in the t-x domain. Porsani (1999) proposes a
half-step PEF scheme that makes the interpolation process more efficient. Huard
et al. (1996) and Wang (2002) extend f -x trace interpolation to higher spatial di-
mensions. Gulunay (2003) introduces an algorithm similar to f -x prediction filtering,
which has an elegant representation in the f -k domain. Curry (2006) uses multi-
dimensional nonstationary PEFs to interpolate diffracted multiples. Naghizadeh and
Sacchi (2009) propose an adaptive f -x interpolation using exponentially weighted
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recursive least squares. More recently, Naghizadeh and Sacchi (2010a) propose a
prediction approach similar to Gulunay’s method but using the curvelet transform
instead of the Fourier transform. Abma and Kabir (2005) compare the performance
of several different interpolation methods.

Correcting irregular spatial sampling is another application for seismic data in-
terpolation algorithms. A variety of interpolation methods have been published in
the recent years. One approach is to estimate the PEF on multiple rescaled copies
of the irregular data (Curry, 2003), where the data are rescaled with a number of
progressively-larger bin sizes. Curry (2004) further improves the rescaling method by
introducing multiple scales of the data where the location of the grid cells are varied
in addition to the size of the cells. Curry and Shan (2008) use pseudo-primary data
by crosscorrelating multiples and primaries to estimate nonstationary PEF and then
interpolated missing near offsets. Naghizadeh and Sacchi (2010b) propose autoregres-
sive spectral estimates to reconstruct aliased data and data with gaps.

Seismic data are nonstationary. The standard PEF is designed under the assump-
tion of stationary data and becomes less effective when this assumption is violated
(Claerbout, 1992). Cutting data into overlapping windows (patching) is a common
method to handle nonstationarity (Claerbout, 2010), although it occasionally fails
in the presence of variable dips. Crawley et al. (1999) propose smoothly-varying
nonstationary PEFs with “micropatches” and radial smoothing, which typically pro-
duces better results than the rectangular patching approach. Fomel (2002) develops
a nonstationary plane-wave destruction (PWD) filter as an alternative to t-x PEF
(Claerbout, 1992) and applies the PWD operator to trace interpolation. The PWD
method depends on the assumption of a small number of smoothly variable seismic
dips. Curry (2003) uses Laplacian and radial rougheners to ensure a nonstation-
ary PEF that varies smoothly in space, which specifies an appropriate regularization
operator.

In this paper, we use the two-step strategy, similar to that of Claerbout (1992)
and Crawley et al. (1999), but calculate the adaptive PEF by using regularized non-
stationary autoregression (Fomel, 2009) to handle both nonstationarity and aliasing.
The key idea is the use of shaping regularization (Fomel, 2007) to constrain the spa-
tial smoothness of filter coefficients. We provide an approach to nonstationary data
interpolation, which has an intuitive selection of parameters and fast iteration con-
vergence. We test the new method by using several benchmark synthetic examples.
Results of applying the proposed method to a field data example demonstrate that
it can be effective in trace interpolation problems, even in the presence of multiple
strongly variable slopes.

THEORY

A common constraint for interpolating missing seismic traces is to ensure that the
interpolated data, after specified filtering, have minimum energy (Claerbout, 1992).
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Filtering is equivalent to spectral multiplication. Therefore, specified filtering is a way
of prescribing a spectrum for the interpolated data. A sensible choice is a spectrum
of the recorded data, which can be captured by finding the data’s PEF (Spitz, 1991;
Crawley, 2000). The PEF, also known as the autoregression filter, plays the role of
the ‘inverse-covariance matrix’ in statistical estimation theory. A signal is regressed
on itself in the estimation of PEF. The PEF can be implemented in either t-x (time-
space) or f -x (frequency-space) domain. Time-space PEFs are less likely to create
spurious events in the presence of noise than f -x PEFs (Abma, 1995; Crawley, 2000).
When data interpolation is cast as an inverse problem, a PEF can be used to find
missing data. This involves a two-step approach. In the first step, a PEF is estimated
by minimizing the output of convolution of known data with an unknown PEF. In the
second step, the missing data is found by minimizing the convolution of the recently
calculated PEF with the unknown model, which is constrained where the data are
known (Curry, 2004).

Step 1: Adaptive PEF estimation

Regular trace interpolation

An important property of PEFs is scale invariance, which allows estimation of PEF
coefficients An (including the leading “−1” and prediction coefficients Bn) for incom-
plete aliased data S(t, x) that include known traces Sknown(t, xk) and unknown or
zero traces Szero(t, xz). For trace decimation, zero traces interlace known traces. To
avoid zeroes that influence filter estimation, we interlace the filter coefficients with
zeroes. For example, consider a 2-D PEF with seven prediction coefficients:

B3 B4 B5 B6 B7

· · −1 B1 B2
(1)

Here, the horizontal axis is time, the vertical axis is space, and “·” denotes zero.
Rescaling both time and spatial axes assumes that the dips represented by the original
filter in equation 1 are the same as those represented by the scaled filter (Claerbout,
1992):

B3 · B4 · B5 · B6 · B7

· · · · · · · · ·
· · · · −1 · B1 · B2

(2)

For nonstationary situations, we can also assume locally stationary spectra of the
data because trace decimation makes the space between known traces small enough,
thus making adaptive PEFs locally scale-invariant. For estimating adaptive PEF
coefficients, nonstationary autoregression allows coefficients Bn to change with both
t and x. The new adaptive filter can look something like

B3(t, x) · B4(t, x) · B5(t, x) · B6(t, x) · B7(t, x)
· · · · · · · · ·
· · · · −1 · B1(t, x) · B2(t, x)

(3)
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In other words, prediction coefficients Bn(t, x) are obtained by solving the least-
squares problem,

B̂n(t, x) = arg min
Bn

‖S(t, x)−
N∑

n=1

Bn(t, x)Sn(t, x)‖22

+ε2
N∑

n=1

‖D[Bn(t, x)]‖22 , (4)

where Sn(t, x)=S(t−mi∆ t, x−mj∆x), which represents the causal translation of
S(t, x), with time-shift index i and spatial-shift index j scaled by decimation interval
m. Note that predefined constant m uses the interlacing value as an interval; i.e., the
shift interval equals 2 in equation 3. Subscript n is the general shift index for both time
and space, and the total number of i and j is N . D is the regularization operator,
and ε is a scalar regularization parameter. All coefficients Bn(t, x) are estimated
simultaneously in a time/space variant manner. This approach was described by
Fomel (2009) as regularized nonstationary autoregression (RNA). If D is a linear
operator, least-squares estimation reduces to linear inversion

b = A−1 d , (5)

where
b =

[
B1(t, x) B2(t, x) · · · BN(t, x)

]T
, (6)

d =
[
S1(t, x)S(t, x) S2(t, x)S(t, x) · · · SN(t, x)S(t, x)

]T
, (7)

and the elements of matrix A are

Ank(t, x) = Sn(t, x)Sk(t, x) + ε2 δnk D
T D . (8)

Shaping regularization (Fomel, 2007) incorporates a shaping (smoothing) opera-
tor G instead of D and provides better numerical properties than Tikhonov’s reg-
ularization (Tikhonov, 1963) in equation 4 (Fomel, 2009). Inversion using shaping
regularization takes the form

b = Â−1 d̂ , (9)

where

d̂ =
[
G [S1(t, x)S(t, x)] G [S2(t, x)S(t, x)] · · · G [SN(t, x)S(t, x)]

]T
, (10)

the elements of matrix Â are

Ânk(t, x) = λ2 δnk + G
[
Sn(t, x)Sk(t, x)− λ2 δnk

]
, (11)

and λ is a scaling coefficient. One advantage of the shaping approach is the relative
ease of controlling the selection of λ and G in comparison with ε and D. We define
G as Gaussian smoothing with an adjustable radius, which is designed by repeated
application of triangle smoothing (Fomel, 2007), and choose λ to be the mean value
of Sn(t, x).

CoefficientsBn(t, xz) at zero traces Szero(t, xz) get constrained (effectively smoothly
interpolated) by regularization. The required parameters are the size and shape of
the filter Bn(t, x) and the smoothing radius in G.
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Missing data interpolation

Irregular gaps occur in the recorded data for many different reasons, and prediction-
error filters are known to be a powerful method for interpolating missing data. Missing
data interpolation is a particular case of data regularization, where the input data are
already given on a regular grid, and one needs to reconstruct only the missing values
in empty bins (Fomel, 2001). One can use existing traces to directly estimate adaptive
PEF coefficients instead of scaling the filter as in regular trace interpolation problem.
However, finding the adaptive PEF needs to avoid using any regression equations that
involve boundaries or missing data. This can be achieved by creating selection mask
operator K(t, x), a diagonal matrix with ones at the known data locations and zeros
elsewhere, for both causal translations and input data (Claerbout, 2010).

Analogously to the stationary prediction-error filter (1), adaptive PEF coefficients
Bn(t, x) use the unscaled format and appear as

B3(t, x) B4(t, x) B5(t, x) B6(t, x) B7(t, x)
· · −1 B1(t, x) B2(t, x)

(12)

The nonstationary coefficients Bn(t, x) can be obtained by solving the least-squares
problem

B̂n(t, x) = arg min
Bn

‖K(t, x)[S(t, x)−
N∑

n=1

Bn(t, x)Sn(t, x)]‖22

+ε2
N∑

n=1

‖D[Bn(t, x)]‖22 . (13)

where Sn(t, x) = S(t − i, x − j). By using shaping regularization, adaptive PEF
coefficients are smoothly filled at missing trace locations.

Step 2: Data interpolation with adaptive PEF

In the second step, a similar problem is solved, except that the filter is known, and
the missing traces are unknown. In the decimated-trace interpolation problem, we
squeeze (by throwing away alternate zeroed rows and columns) the filter in equation 3
to its original size and then formulate the least-squares problem,

Ŝ(t, x) = arg min
S
‖S(t, x)−

N∑
n=1

B̂n(t, x)Sn(t, x)‖22 , (14)

subject to
Ŝ(t, xk) = Sknown(t, xk) , (15)

where Ŝ(t, x) represents the interpolated output, and i and j use the original shift as
the interval; i.e., the shift interval equals 1.
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We carry out the minimization in equations 4, 13, and 14 by the conjugate gradient
method (Hestenes and Stiefel, 1952). The constraint condition (equation 15) is used
as the initial model and constrains the output by using the known traces for each
iteration in the conjugate-gradient scheme. The computational cost is proportional
to Niter ×Nf ×Nt ×Nx, where Niter is the number of iterations, Nf is the filter size,
and Nt ×Nx is the data size. In our tests, Nf and Niter were approximately equal to
100. Increasing the smoothing radius in shaping regularization decreases Niter in the
filter estimation step.

SYNTHETIC DATA TESTS

Aliasing decimated-trace interpolation test

We start with a strongly aliased synthetic example from Claerbout (2009). The sparse
spatial sampling makes the gather severely aliased, especially at the far offset positions
(Figure 1a). For comparison, we used PWD (Fomel, 2002) to interpolate the traces
(Figure 1b). Interpolation with PWD depends on dip estimation. In this example,
the true dip is non-negative everywhere and is easily distinguished from the aliased
one. Therefore, the PWD method recovers the interpolated traces well. However,
in the more general case, an additional interpretation may be required to determine
which of the dip components is contaminated by aliasing. According to the theory
described in the previous section, the PEF-based methods use the lower (less aliased)
frequencies to estimate PEF coefficients, and then interpolate the decimated traces
(high-frequency information) by minimizing the convolution of the scale-invariant
PEF with the unknown model, which is constrained where the data is known. We
designed adaptive PEFs using 10 (time) × 2 (space) coefficients for each sample and a
50-sample (time) × 2-sample (space) smoothing radius and then applied them so as to
interpolate the aliased trace. The nonstationary autoregression algorithm effectively
removes all spatial aliasing artifacts (Figure 1c). The proposed method compares
well with the PWD method. The CPU times, for single 2.66GHz CPU used in this
example, are 20 seconds for adaptive PEF estimation (step 1) and 2 seconds for data
interpolation (step 2).

Abma decimated-trace interpolation tests

A benchmark example created by Raymond Abma (personal communication) shows
a simple curved event (Figure 2a). The challenge in this example is to account for
both nonstationarity and aliasing. Figure 2b shows the interpolated result using
Claerbout’s stationary t-x PEF, which was estimated and applied in one big window,
with each PEF coefficient Bn constant at every data location. Note that the t-x
PEF method can recover the aliasing trace only in the dominant slope range. The
trace-interpolating result using regularized nonstationary autoregression is shown in
Figure 2c. The adaptive PEF has 20 (time) × 3 (space) coefficients for each sample
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a b

c

Figure 1: Aliased synthetic data (a), trace interpolation with plane-wave destruction
(b), and trace interpolation with regularized nonstationary autoregression (c). Three
additional traces were inserted between each of the neighboring input traces.
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and a 20-sample (time) × 3-sample (space) smoothing radius. The proposed method
eliminates all nonstationary aliasing and improves the continuity of the curved event.

Abma and Kabir (2005) present a comparison of several algorithms used for trace
interpolation. We chose the most challenging benchmark Marmousi example from
Abma and Kabir to illustrate the performance of RNA interpolation. Figure 3a
shows a zero-offset section of the Marmousi model, in which curved events violate the
assumptions common for most trace-interpolating methods. Figure 3b shows that
our method produces reasonable results for both curved and weak events and does
not introduce any undesirable noise. The adaptive PEF parameters correspond to 7
(time) × 5 (space) coefficients for each sample and a 40-sample (time) × 30-sample
(space) smoothing radius.

Missing-trace interpolation test

A missing trace test is shown in Figure 4a and comes from decimated-trace interpo-
lation result (Figure 2c) after removing 70% of randomly selected traces. The curved
event makes it difficult to recover the missing traces. The interpolated result is shown
in Figure 4b, which uses a regularized adaptive PEF with 4 (time) × 2 (space) coeffi-
cients for each sample and a 50-sample (time) × 10-sample (space) smoothing radius.
In the interpolated result, it is visually difficult to distinguish the missing trace lo-
cations, which is an evidence of successful interpolation. The filter size along space
direction needs to be small in order to generate enough regression equations.

FIELD DATA EXAMPLES

We use a set of marine 2-D shot gathers from a deepwater Gulf of Mexico survey
(Crawley et al., 1999; Fomel, 2002) to further test the proposed method. Figure 5
shows the data before and after subsampling in the offset direction. The shot gather
has long-period multiples and complicated diffraction events caused by a salt body.
Amplitudes of the events are not uniformly distributed. Subsampling by a factor of
2 (Figure 5b) causes visible aliasing of the steeply dipping events. We designed a
nonstationary PEF, with 15 (time) × 5 (space) coefficients for each sample and a
50-sample (time) × 20-sample (space) smoothing radius to handle the variability of
events. Figure 6 shows the interpolation result and the difference between interpo-
lated traces and original traces plotted at the same clip value. The proposed method
succeeds in the sense that it is hard to distinguish interpolated traces from the inter-
polation result alone. A close-up comparison between the original and interpolated
traces (Figure 7) shows some small imperfections. Some energy of the steepest events
is partly missing. Coefficients of the adaptive PEF are illustrated in Figure 8, which
displays the first coefficient (B1) and the mean coefficient of Bn, respectively. The
filter coefficients vary in time and space according to the curved events. The inter-
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a

b

c

Figure 2: Curve model (a), trace interpolation with stationary PEF (b), and trace
interpolation with adaptive PEF (c).
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a

b

Figure 3: Marmousi model (a) and trace interpolation with regularized nonstationary
autoregression (b).
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a

b

Figure 4: Curved model (Figure 2c) with 70% randomly selected traces removed (a)
and trace interpolation with regularized nonstationary autoregression (b).
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polated results are relatively insensitive to the smoothing parameters.

a b

Figure 5: A 2-D marine shot gather. Original input (a) and input subsampled by a
factor of 2 (b).

For a missing-trace interpolation test (Figure 9a), we removed 40% of randomly
selected traces from the input data (Figure 5a). Furthermore, the first five traces were
also removed to simulate traces missing at near offset. The adaptive PEF can only
use a small number of coefficients in the spatial direction because of a small number
of fitting equations (where the adaptive PEF lies entirely on known data). However,
it also limits the ability of the proposed method to interpolate dipping events. We
used a nonstationary PEF with 4 (time) × 3 (space) coefficients for each sample
and a 50-sample (time) × 10-sample (space) smoothing radius to handle the missing
trace recovery. The result is shown in Figure 9b. By comparing the results with the
original input (Figure 5a), the missing traces are interpolated reasonably well except
for weaker amplitude of the steeply dipping events.

An extension of the method to 3-D is straightforward and follows a two-step least-
squares method with 3-D adaptive PEF estimation. We use a set of shot gathers as
the input data volume to further test our method (Figure 10a). We removed 50% of
randomly selected traces and five near offset traces for all shots (Figure 10b). For
comparison, we used PWD to recover the missing traces (Figure 11a). The PWD
method produces a reasonable result after carefully estimating dip information, but
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a b

Figure 6: Shot gather after trace interpolation (adaptive PEF with 15 × 5) (a) and
difference between original gather (Figure 5a) and interpolated result (Figure 6a) (b).
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a b

Figure 7: Close-up comparison of original data (a) and interpolated result by RNA
(b).

GEO-2010-0231-final



Liu and Fomel 15Regularized nonstationary autoregression

a b

Figure 8: Adaptive PEF coefficients. First coefficient B1 (a) and mean coefficient of
Bn (b).

the interpolated error is slightly larger in the diffraction locations. (Figure 11b). The
additional direction provided more information for interpolation but also increased
the number of zeros in the mask operator K(t, x), which constrains enough fitting
equations in equation 13. To use the available fitting equations for adaptive PEF
estimation, we chose a smaller number of coefficients in the spatial direction. The
proposed method is able to handle conflicting dips, although it does not appear to im-
prove the dipping-event recovery compared to the 2-D case. This characteristic partly
limits the application of RNA in 3-D case. We used a 3-D nonstationary PEF with 4
(time) × 2 (space) × 2 (space) coefficients for each sample and a 50-sample (time) ×
10-sample (space) × 10-sample (space) smoothing radius was selected. Similar to the
result in the 2-D example, Figure 11c shows the interpolation result, in which only
steeply-dipping low-amplitude diffraction events with are lost (Figure 11d).

CONCLUSIONS

We have introduced a new approach to adaptive prediction-error filtering for seismic
data interpolation. Our approach uses regularized nonstationary autoregression to
handle time-space variation of nonstationary seismic data. We apply this method to
interpolating seismic traces beyond aliasing and to reconstructing data with missing
and decimated traces. Experiments with benchmark synthetic examples and field
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a b

Figure 9: Field data with 40% randomly missing traces (a), and reconstructed data
using RNA (b).

a b

Figure 10: A 3-D field data volume (a) and data with 50% randomly missing traces
(b).
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a b

c d

Figure 11: Reconstructed data volume using 3-D plane-wave destruction (a), dif-
ference between original input (Figure 10a) and interpolated result (Figure 11a),
reconstructed data volume using 3-D regularized nonstationary autogression (c), and
difference between original input (Figure 10a) and interpolated result (Figure 11c)
(d).
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data tests show that the proposed filters can depict nonstationary signal variation
and provide a useful description of complex wavefields having multiple curved events.
These properties are useful for applications such as seismic data interpolation and
regularization. Other possible applications may include seismic noise attenuation.
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