
Plane waves in three dimensions

Jon Claerbout

In this chapter we seek a deeper understanding of plane waves in three dimensions,
where the examples and theory typically refer to functions of time t and two space coordi-
nates (x, y), or to 3-D migration images where the t coordinate is depth or traveltime depth.
As in Chapter ??, we need to decompose data volumes into subcubes, shown in Figure 1.

Figure 1: Left is space of inputs and
outputs. Right is their separation
during analysis.

In this chapter we will see that the wave model implies the 3-D whitener is not a
cube filter but two planar filters. The wave model allows us to determine the scale factor
of a signal, even where signals fluctuate in strength because of interference. Finally, we
examine the local-monoplane concept that uses the superposition principle to distinguish a
sedimentary model cube from a data cube.

THE LEVELER: A VOLUME OR TWO PLANES?

In two dimensions, levelers were taken to be PEFs, small rectangular planes of numbers in
which the time axis included enough points to include reasonable stepouts were included
and the space axis contained one level plus another space level, for each plane-wave slope
supposed to be present.

We saw that a whitening filter in three dimensions is a small volume with shape defined
by subroutine createhelix(). It might seem natural that the number of points on the
x- and y-axes be related to the number of plane waves present. Instead, I assert that
if the volume contains plane waves, we don’t want a volume filter to whiten it; we can
use a pair of planar filters to do so and the order of those filters is the number of planes
thought to be simultaneously present. I have no firm mathematical proofs, but I offer you
some interesting discussions, examples, and computer tools for you to experiment with. It
seems that some applications call for the volume filter while others call for the two planes.
Because two planes of numbers generally contain many fewer adjustable values than a
volume, statistical-estimation reasons also favor the planes.

What is the lowest-order filter that, when applied to a volume, will destroy one and
only one slope of plane wave?
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First we seek the answer to the question, “What is the lowest order filter that will
destroy one and only one plane?” To begin with, we consider that plane to be horizontal so
the volume of numbers is f(t, x, y) = b(t) where b(t) is an arbitrary function of time. One
filter that has zero-valued output (destroys the plane) is ∂x ≡ ∂/∂x. Another is the operator
∂y ≡ ∂/∂y. Still another is the Laplacian operator which is ∂xx+∂yy ≡ ∂2/∂x2+∂2/∂y2.

The problem with ∂/∂x is that although it destroys the required plane, it also destroys
f(t, x, y) = a(t, y) where a(t, y) is an arbitrary function of (t, y) such as a cylinder with
axis parallel to the x-axis. The operator ∂/∂y has the same problem but with the axes
rotated. The Laplacian operator not only destroys our desired plane, but it also destroys
the well known nonplanar function eax cos(ay), which is just one example of the many other
interesting shapes that constitute solutions to Laplace’s equation.

I remind you of a basic fact: When we set up the fitting goal 0 ≈ Af , the quadratic
form minimized is fTATAf , which by differentiation with respect to fT gives us (in a
constraint-free region) ATAf = 0. So, minimizing the volume integral (actually the sum)
of the squares of the components of the gradient implies that Laplace’s equation is satisfied.

In any volume, the lowest-order filter that will destroy level planes and no other wave
slope is a filter that has one input and two outputs. That filter is the gradient, (∂/∂x, ∂/∂y).
Both outputs vanish if and only if the plane has the proper horizontal orientation. Other
objects and functions are not extinguished (except for the non-wave-like function f(t, x, y) =
const). It is annoying that we must deal with two outputs and that will be the topic of
further discussion.

A wavefield of tilted parallel planes is f(t, x, y) = g(τ − pxx − pyy), where g() is an
arbitrary one-dimensional function. The operator that destroys these tilted planes is the
two-component operator (∂x + px∂t, ∂y + py∂t).

The operator that destroys a family of dipping planes

f(t, x, y) = g(τ − pxx− pyy)

is  ∂
∂x + px

∂
∂t

∂
∂y + py

∂
∂t



PEFs overcome spatial aliasing of difference operators

The problem I found with finite-difference representations of differential operators is that
they are susceptible to spatial aliasing. Even before they encounter spatial aliasing,
they are susceptible to accuracy problems known in finite-difference wave propagation as
“frequency dispersion.” The aliasing problem can be avoided by the use of spatial prediction
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operators such as
· a
· b
1 c
· d
· e

(1)

where the vertical axis is time; the horizontal axis is space; and the “·”s are zeros. Another
possibility is the 2-D whitening filter

f a
g b
1 c
· d
· e

(2)

Imagine all the coefficients vanished but d = −1 and the given 1. Such filters would
annihilate the appropriately sloping plane wave. Slopes that are not exact integers are also
approximately extinguishable, because the adjustable filter coefficients can interpolate in
time. Filters like (2) do the operation ∂x + px∂t, which is a component of the gradient in
the plane of the wavefront, and they include a temporal deconvolution aspect and a spatial
coherency aspect. My experience shows that the operators (1) and (2) behave significantly
differently in practice, and I am not prepared to fully explain the difference, but it seems
to be similar to the gapping of one-dimensional filters.

You might find it alarming that your teacher is not fully prepared to explain the dif-
ference between a volume and two planes, but please remember that we are talking about
the factorization of the volumetric spectrum. Spectral matrices are well known to have
structure, but books on theory typically handle them as simply λI. Anyway, wherever you
see an A in a three-dimensional context, you may wonder whether it should be interpreted
as a cubic filter that takes one volume to another, or as two planar filters that take one
volume to two volumes as shown in Figure 2.

Figure 2: An inline 2-D PEF and
a crossline 2-D PEF both applied
throughout the volume. To find each
filter, minimize each output power
independently.

My view of the world

I start from the idea that the four-dimensional world (t, x, y, z) is filled with expanding
spherical waves and with quasispherical waves that result from reflection from quasiplanar
objects and refraction through quasihomogeneous materials. We rarely, if ever see in an
observational data cube, an entire expanding spherical wave, but we normally have a two-
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or three-dimensional slice with some wavefront curvature. We analyze data subcubes that
I call bricks. In any brick we see only local patches of apparent plane waves. I call them
platelets. From the microview of this brick, the platelets come from the “great random-
point-generator in the sky,” which then somehow convolves the random points with a plate-
like impulse response. If we could deconvolve these platelets back to their random source
points, there would be nothing left inside the brick because the energy would have gone
outside. We would have destroyed the energy inside the brick. If the platelets were coin
shaped, then the gradient magnitude would convert each coin to its circular rim. The plate
sizes and shapes are all different and they damp with distance from their centers, as do
Gaussian beams. If we observed rays instead of wavefront platelets then we might think of
the world as being filled with noodles, and then. . . .

How is it possible that in a small brick we can do something realistic about deconvolving
a spheroidal impulse response that is much bigger than the brick? The same way as in one
dimension, where in a small time interval we can estimate the correct deconvolution filter
of a long resonant signal. A three-point filter destroys a sinusoid.

The inverse filter to the expanding spherical wave might be a huge cube. Good approx-
imations to this inverse at the brick level might be two small planes. Their time extent
would be chosen to encompass the slowest waves, and their spatial extent could be two or
three points, representing the idea that normally we can listen to only one person at a time,
occasionally we can listen to two, and we can never listen to three people talking at the
same time.

WAVE INTERFERENCE AND TRACE SCALING

Although neighboring seismometers tend to show equal powers, the energy on one seismome-
ter can differ greatly from that of a neighbor for both theoretical reasons and practical ones.
Should a trace ever be rescaled to give it the same energy as its neighbors? Here we review
the strong theoretical arguments against rescaling. In practice, however, especially on land
where coupling is irregular, scaling seems a necessity. The question is, what can go wrong
if we scale traces to have equal energy, and more basically, where the proper scale factor
cannot be recorded, what should we do to get the best scale factor? A related question is
how to make good measurements of amplitude versus offset. To understand these issues we
review the fundamentals of wave interference.

Theoretically, a scale-factor problem arises because locally, wavefields, not energies, add.
Nodes on standing waves are familiar from theory, but they could give you the wrong idea
that the concept of node is one that applies only with sinusoids. Actually, destructive
interference arises anytime a polarity-reversed waveform bounces back and crosses itself.
Figure 3 shows two waves of opposite polarity crossing each other. Observe that one seis-
mogram has a zero-valued signal, while its neighbors have anomalously higher amplitudes
and higher energies than are found far away from the interference. The situation shown in
Figure 3 does not occur easily in nature. Reflection naturally comes to mind, but usually
the reflected wave crosses the incident wave at a later time and then they don’t extinguish.
Approximate extinguishing occurs rather easily when waves are quasi-monochromatic. We
will soon see, however, that methodologies for finding scales all begin with deconvolution
and that eliminates the monochromatic waves.
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Figure 3: Superposition of plane
waves of opposite polarity.

Computing the proper scale factor for a seismogram

With data like Figure 3, rescaling traces to have equal energy would obviously be wrong.
The question is, “How can we determine the proper scale factor?” As we have seen, a
superposition of N plane waves exactly satisfies an N-th order (in x) difference equation.
Given a 2-D wave field, we can find its PEF by minimizing output power. Then we ask the
question, could rescaling the traces give a lower output power? To answer this, we set up an
optimization goal: Given the leveler (be it a cubic PEF or two planar ones), find the best
trace scales. (After solving this, we could return to re-estimate the leveler, and iterate.) To
solve for the scales, we need a subroutine that scales traces and the only tricky part is that
the adjoint should bring us back to the space of scale factors. This is done by scaletrace

Notice that to estimate scales, the adjoint forms an inner product of the raw data on the

user/gee/scaletrace.c

1 for ( i=i 2 =0; i 2 < n2 ; i 2++) {
2 for ( i 1 =0; i 1 < n1 ; i 1++, i++) {
3 i f ( adj ) s c a l e [ i 2 ] += sdata [ i ] ∗ data [ i ] ;
4 else sdata [ i ] += s c a l e [ i 2 ] ∗ data [ i ] ;
5 }
6 }

previously scaled data. Let the operator implemented by scaletrace be denoted by D,
which is mnemonic for “data” and for “diagonal matrix,” and let the vector of scale factors
be denoted by s and the leveler by A. Now we consider the fitting goal 0 ≈ ADs. The
trouble with this fitting goal is that the solution is obviously s = 0. To avoid the trivial
solution s = 0, we can choose from a variety of supplemental fitting goals. One possibility
is that for the i-th scale factor we could add the fitting goal si ≈ 1. Another possibility,
perhaps better if some of the signals have the opposite of the correct polarity, is that the
sum of the scales should be approximately unity. I regret that time has not yet allowed me
to identify some interesting examples and work them through.
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LOCAL MONOPLANE ANNIHILATOR

LOMOPLAN (LOcal MOno PLane ANnihilator) is a data-adaptive filter that extinguishes
a local monoplane, but cannot extinguish a superposition of several planes. We presume
an ideal sedimentary model as made of (possibly curved) parallel layers. Because of the
superposition principle, data can be a superposition of several plane waves, but the ideal
model should consist locally of only a single plane. Thus, LOMOPLAN extinguishes an ideal
model, but not typical data. I conceived of LOMOPLAN as the “ultimate” optimization
criterion for inversion problems in reflection seismology (Claerbout, 1992) but it has not
yet demonstrated that it can attain that lofty goal. Instead, however, working in two
dimensions, it is useful in data interpretation and in data quality inspection.

The main way we estimate parameters in reflection seismology is that we maximize the
coherence of theoretically redundant measurements. Thus, to estimate velocity and statics
shifts, we maximize something like the power in the stacked data. Here I propose another
optimization criterion for estimating model parameters and missing data. An interpreter
looking at a migrated section containing two dips in the same place suspects wave superpo-
sition more likely than bedding texture superposition. To minimize the presence of multiple
dipping events in the same place, we should use the mono plane annihilator (MOPLAN)
filter as the weighting operator for any fitting goal. Because the filter is intended for use on
images or migrated data, not on data directly, I call it a plane annihilator, not a planewave
annihilator. (A time-migration or merely a stack, however, might qualify as an image.)
We should avoid using the word “wavefront” because waves readily satisfy the superposi-
tion principle, whereas images do not, and it is this aspect of images that I advocate and
formulate as “prior information.”

An example of a MOPLAN in two dimensions, (∂x + px∂τ ), is explored in Chapter 4
of PVI, where the main goal is to estimate the (τ, x)-variation of px. Another family of
MOPLANs arise from multidimensional prediction-error filtering described earlier in this
book and in PVI, Chapter 8.

Here I hypothesize that a MOPLAN may be a valuable weighting function for many
estimation applications in seismology. Perhaps we can estimate statics, interval velocity,
and missing data if we use the principle of minimizing the power out of a LOcal MOno PLane
ANnihilator (LOMOPLAN) on a migrated section. Thus, those embarrassing semicircles
that we have seen for years on our migrated sections may hold one of the keys for unlocking
the secrets of statics and lateral velocity variation. I do not claim that this concept is as
powerful as our traditional methods. I merely claim that we have not yet exploited this
concept in a systematic way and that it might prove useful where traditional methods break.

For an image model of nonoverlapping curved planes, a suitable choice of weighting
function for fitting applications is the local filter that destroys the best fitting local
plane.

Mono-plane deconvolution

The coefficients of a 2-D monoplane annihilator filter are defined to be the same as those
of a 2-D PEF of spatial order unity; in other words, those defined by either (1) or (2).
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The filter can be lengthened in time but not in space. The choice of exactly two columns
is a choice to have an analytic form that can exactly destroy a single plane, but cannot
destroy two. Applied to two signals that are statistically independent, the filter (2) reduces
to the well-known prediction-error filter in the left column and zeros in the right column.
If the filter coefficients were extended in both directions on t and to the right on x, the
two-dimensional spectrum of the input would be flattened.

Monoplanes in local windows

The earth dip changes rapidly with location. In a small region there is a local dip and dip
bandwidth that determines the best LOMOPLAN (LOcal MOPLAN). To see how to cope
with the edge effects of filtering in a small region, and to see how to patch together these
small regions, recall subroutine patchn() on page ?? and the weighting subroutines that
work with it.

Figure 4 shows a synthetic model that illustrates local variation in bedding. Notice
dipping bedding, curved bedding, unconformity between them, and a fault in the curved
bedding. Also, notice that the image has its amplitude tapered to zero on the left and
right sides. After local monoplane annihilation (LOMOPLAN), the continuous bedding is
essentially gone. The fault and unconformity remain.

Figure 4: Left is a synthetic reflectivity model. Right is the result of local monoplane
annihilation.

The local spatial prediction-error filters contain the essence of a factored form of the
inverse spectrum of the model.
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Because the plane waves are local, the illustrations were made with module lopef on
page ??.

Crossing dips

Figure 5: Conflicting dips before and after application of a local monoplane annihilator.

Figure 5 deserves careful study. The input frame is dipping events with amplitudes
slowly changing as they cross the frame. The dip of the events is not commensurate with
the mesh, so we use linear interpolation that accounts for the irregularity along an event.
The output panel tends to be small where there is only a single dip present. Where two
dips cross, they tend to be equal in magnitude. Studying the output more carefully, we
notice that of the two dips, the one that is strongest on the input becomes irregular and
noisy on the output, whereas the other dip tends to remain phase-coherent.

I could rebuild Figure 5 to do a better job of suppressing monodip areas if I passed the
image through a lowpass filter, and then designed a gapped deconvolution operator. Instead,
I preferred to show you high-frequency noise in the place of an attenuated wavefront.

The residual of prediction-error deconvolution tends to have a white spectrum in time.
This aspect of deconvolution is somewhat irritating and in practice it requires us to post-
filter for display, to regain continuity of signals. As is well known (PVI, for example), an
alternative to postfiltering is to put a gap in the filter. A gapped filter should work with
2-D filters too, but it is too early to describe how experimenters will ultimately choose to
arrange gaps, if any, in 2-D filters. There are some interesting possibilities. (Inserting a gap
also reduces the required number of CD iterations.)

Tests of 2-D LOMOPLAN on field data

Although the LOMOPLAN concept was developed for geophysical models, not raw data,
initial experience showed that the LOMOPLAN program is effective for quality testing data
and data interpretation.

Some field-data examples are in Figures 6 and 7. These results are not surprising. A
dominant local plane is removed, and noise or the second-from-strongest local plane is left.
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These data sets fit the local plane model so well that subtracting the residual noise from
the data made little improvement. These figures are clearer on a video screen. To facilitate
examination of the residual on Figure 6 on paper (which has a lesser dynamic range than
video), I recolored the white residual with a short triangle filter on the time axis.

Figure 6: Data section from the Gulf of Mexico (left) and after LOMOPLAN (right) Press
button for movie.

The residual in Figure 7 is large at the dead trace and wherever the data contains
crossing events. Also, closer examination showed that the strong residual trace near 1.1 km
offset is apparently slightly time-shifted, almost certainly a cable problem, perhaps resulting
from a combination of the stepout and a few dead pickups. Overall, the local-plane residual
shows a low-frequency water-velocity wave seeming to originate from the ship.

GRADIENT ALONG THE BEDDING PLANE

The LOMOPLAN (LOcal MOnoPLane ANnihilator) filter in three dimensions is a decon-
volution filter that takes a volume in and produces two volumes out. The x-output volume
results from a first order prediction-error filter on the x-axis, and the y-output volume is
likewise on the y-axis.

Although I conceived of 2-D LOMOPLAN as the “ultimate” optimization criterion for
inversion applications in reflection seismology of sedimentary sections, it turned out that
it was more useful in data interpretation and in data-quality inspection. In this study, I
sought to evaluate usefulness with three-dimensional data such as 3-D stacks or migrated
volumes, or 2-D prestack data.

In experimenting with 3-D LOMOPLAN, I came upon a conceptual oversimplification,
which although it is not precisely correct, gives a suitable feeling of the meaning of the
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Figure 7: Portion of Yilmaz and Cumro data set 27 (left) and after LOMOPLAN (right).
Press button for movie.

operator. Imagine that the earth was flat horizontal layers, except for occasional faults.
Then, to find the faults you might invoke the horizontal gradient of the 3-D continuum of
data. The horizontal components of gradient vanish except at a fault, where their relative
magnitudes tell you the orientation of the fault. Instead of using the gradient vector, you
could use prediction-error filters of first order (two components) along x and y directions.
3-D LOMOPLAN is like this, but the flat horizontal bedding may be dipping or curved.
No output is produced (ideally) except at faults. The 3-D LOMOPLAN is like the gradient
along the plane of the bedding. It is nonzero where the bedding has an intrinsic change.

LOMOPLAN flags the bedding where there is an intrinsic change.

Definition of LOMOPLAN in 3-D

Three-dimensional LOMOPLAN is somewhat like multiple passes of two-dimensional LO-
MOPLAN; i.e., we first LOMOPLAN the (t, x)-plane for each y, and then we LOMOPLAN
the (t, y)-plane for each x. Actually, 3-D LOMOPLAN is a little more complicated than
this. Each LOMOPLAN filter is designed on all the data in a small (t, x, y) volume.

To put the LOcal in LOMOPLAN we use subcubes (bricks). Recall that we can do 2-D
LOMOPLAN with the prediction-error subroutine find lopef() on page ??. To do 3-D
LOMOPLAN we need to make two calls to subroutine find lopef(), one for the x-axis
in-line planar filters and one for the y-axis crossline filters. That is what I will try next
time I install this book on a computer with a bigger memory.
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The quarterdome 3-D synthetic (qdome)

Figure 4 used a model called “Sigmoid.” Using the same modeling concepts, I set out to
make a three-dimensional model. The model has horizontal layers near the top, a Gaussian
appearance in the middle, and dipping layers on the bottom, with horizontal unconformities
between the three regions. Figure 8 shows a vertical slice through the 3-D “qdome” model
and components of its LOMOPLAN. There is also a fault that will be described later.
The most interesting part of the qdome model is the Gaussian center. I started from the

Figure 8: Left is a vertical slice through the 3-D “qdome” model. Center is the in-line
component of the LOMOPLAN. Right is the cross-line component of the LOMOPLAN.

equation of a Gaussian
z(x, y, t) = e−(x2+y2)/t2 (3)

and backsolved for t

t(x, y, z) =

√
x2 + y2

− ln z
(4)

Then I used a random-number generator to make a blocky one-dimensional impedance
function of t. At each (x, y, z) location in the model I used the impedance at time t(x, y, z),
and finally defined reflectivity as the logarithmic derivative of the impedance. Without
careful interpolation (particularly where the beds pinch out) a variety of curious artifacts
appear. I hope to find time to use the experience of making the qdome model to make
a tutorial lesson on interpolation. A refinement to the model is that within a certain
subvolume the time t(x, y, z) is given a small additive constant. This gives a fault along
the edge of the subvolume. Ray Abma defined the subvolume for me in the qdome model.
The fault looks quite realistic, and it is easy to make faults of any shape, though I wonder
how they would relate to realistic fault dynamics. Figure 9 shows a top view of the 3-D
qdome model and components of its LOMOPLAN. Notice that the cross-line spacing has
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been chosen to be double the in-line spacing. Evidently a consequence of this, in both
Figure 8 and Figure 9, is that the Gaussian dome is not so well suppressed on the crossline
cut as on the in-line cut. By comparison, notice that the horizontal bedding above the
dome is perfectly suppressed, whereas the dipping bedding below the dome is imperfectly
suppressed.

Figure 9: Left is a horizontal slice through the 3-D qdome model. Center is the in-line
component of the LOMOPLAN. Right is the cross-line component of the LOMOPLAN.

Finally, I became irritated at the need to look at two output volumes. Because I rarely if
ever interpreted the polarity of the LOMOPLAN components, I formed their sum of squares
and show the single square root volume in Figure 10.

Figure 10: Left is the model. Right is the magnitude of the LOMOPLAN components in
Figure 9.
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3-D SPECTRAL FACTORIZATION

Hi Sergey, Matt, and Sean, Here are my latest speculations, plans:

The 3-D Lomoplan resembles a gradient, one field in, two or three out. Lomoplan times
its adjoint is like a generalized laplacian. Factorizing it yields a lomoplan generalization of
the helix derivative, i.e. a one-to-one operator with the same spectral charactoristic as the
original lomoplan. It will probably not come out to be a juxtaposition of planes, will be
more cube like.

The advantage of being one-to-one is that it can be used as a preconditioner. The
application, naturally enough, is estimating things with a prescribed dip spectrum. Things
like missing data and velocities.

Why use multiplanar lomoplan estimates if they will then be converted by this com-
plicated process into a cube? Why not estimate the cube directly? Maybe to impose the
“pancake” model instead of the noodle model of covariance. Maybe to reduce the number
of coefficients to estimate.

I haven’t figured out yet how to convert this speculation into an example leading to
some figures. If you like the idea, feel free to beat me to it :)
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