
Imaging overturning reflections by

Riemannian Wavefield Extrapolation

Paul Sava

(Colorado School of Mines)

(April 8, 2007)

Running head:

ABSTRACT

Correctly propagating waves from overhanging reflectors is crucial for imaging in complex geology.

This type of reflections are difficult or impossible to use in imaging using one-way downward con-

tinuation, because they violate an intrinsic assumption of this imaging method, i.e. vertical upward

propagation of reflection data.

Riemannian wavefield extrapolation is one of the techniques developed to address the limitations

of one-way wavefield extrapolation in Cartesian coordinates. This method generalizes one-way

wavefield extrapolation to general Riemannian coordinate system. Such coordinate systems can be

constructed in different ways, one possibility being construction using ray tracing in a smooth ve-

locity model from a starting plane in the imaged volume. This approach incorporates partially the

propagation path into the coordinate system and leaves the balance for the one-way wavefield ex-

trapolation operator. Thus, wavefield extrapolation follows overturning wave paths and extrapolated

waves using low-order operators, which makes the extrapolation operation fast and robust.
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INTRODUCTION

Imaging of steeply-dipping reflectors, e.g. faults or salt flanks, is a crucial step in seismic imaging

of complex geology. In particular, accurate positioning of overhanging salt-flanks influences the

quality of migrated images in subsalt regions which are increasingly regarded as the most important

targets for seismic exploration.

This challenge for seismic imaging lead to development of many techniques addressing this

problem. Among the developned techniques, we can identify:

• Kirchhoff migration techniques based on traveltimes computed from overturning rays (Hill

et al., 1991; Gray et al., 2001). Such techniques could be used for imaging of reflections at

arbitrary dip angles. However, traveltime computation in complex velocity media requires

model approximations, e.g. smoothing of sharp velocity boundaries. Furthermore, Kirchhoff

migration using multiple arrivals is possible, but technically challenging.

• Reverse-time migration, based on solutions of the acoustic wave-equation, also has the po-

tential to image reflectors at arbitrary dip angles. Furthermore, such techniques allow for

imaging of multiply-reflected waves. However, reverse-time migration is computationally

expensive, which limits its usability in practical imaging problems. Nevertheless, despite its

large computational cost, reverse-time migration is gaining popularity.

• Wavefield extrapolation migration is also employed in imaging steeply dipping reflectors,

despite the intrinsic dip limitation of typical downward continuation operators. However,

these techniques have been modified in various ways to allow for imaging of overturning

energy. For example, Hale et al. (1992) and Zhang et al. (2006) employ a succession of

downward/upward continuation; Rietveld and Berkhout (1994) and Shan and Biondi (2004)
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use tilted coordinates to bring the direction of extrapolation closer to the direction of wave

propagation; Brandsberg-Dahl and Etgen (2003) use extrapolation along beams to achieve

even tighter proximity of the directions of extrapolation and wave propagation; Sava and

Fomel (2005) use one-way extrapolation in general (Riemannian) coordinate systems.

This paper concentrates on using Riemannian wavefield extrapolation (RWE) for imaging re-

flectors with high dip angles. The basic characteristics of RWE recommend it as a good candidate

for imaging of steeply-dipping reflectors: like a Kirchhoff technique, the (overturning) Riemannian

coordinate system allows extrapolation of waves along their natural direction of propagation; like a

wavefield extrapolation technique, RWE allows for extrapolation of all branches of the wavefield,

thus making used of all multiple-paths of extrapolated wavefields. Extrapolation in Cartesian co-

ordinates, including tilted coordinates, and extrapolation along beams, represent special cases of

RWE for particular choices of the coordinate system. Coordinate systems for RWE can be con-

structed by ray tracing or by other approaches based on alternative criteria, e.g. conformal maps

with topography (Shragge and Sava, 2005).

This paper demonstrates the applicability of RWE to the problem of imaging steeply-dipping

reflectors, in particular (overhanging) salt flanks. In addition to accurate implementation of extrap-

olation, a challenge for RWE is represented by the construction of the coordinate system that is

appropriate for imaging of particular reflectors. Thus, a large fraction of this paper is dedicated to

coordinate-system construction methods.

This paper is organized as follows: we begin with a brief review of Riemannian wavefield

extrpaolation, then describe alternatives for the construction of coordinate systems supporting RWE,

and demonstrate the technique with applications to imaging of overhanging salt flank for synthetic

salt modeled data.
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RIEMANNIAN WAVEFIELD EXTRAPOLATION

Riemannian wavefield extrapolation (Sava and Fomel, 2005) generalizes solutions to the Helmholtz

equation of the acoustic wave-equation

∆U =−ω2s2U , (1)

to non-Cartesian coordinate systems, such that extrapolation is not performed strictly in the down-

ward direction. In equation (1),s is slowness,ω is temporal frequency, andU is a monochromatic

acoustic wave.

Assume that we describe the physical space in Cartesian coordinatesx, y andz, and that we

describe a Riemannian coordinate system using coordinatesξ, η andζ related through a generic

mapping

x = x(ξ,η,ζ) , (2)

y = y(ξ,η,ζ) , (3)

z = z(ξ,η,ζ) , (4)

which allows us to compute derivatives of the Cartesian coordinates relative to the Riemannian

coordinates.

Following the derivation of Sava and Fomel (2005), the acoustic wave-equation in Riemannian

coordinates can be written as:

cζζ
∂2U
∂ζ2 +cξξ

∂2U
∂ξ2 +cηη

∂2U
∂η2 +cξη

∂2U
∂ξ∂η

=−(ωs)2 U . (5)

where coefficientsci j are spatially-variable functions of the coordinate system and can be computed

numerically for any given coordinate system using the mappings (2)-(4).

The acoustic wave-equation in Riemannian coordinates (5) ignores the influence of first order
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terms present in a more general acoustic wave-equation in Riemannian coordinates. This approxi-

mation is justified by the fact that, according to the theory of characteristics for second-order hyper-

bolic equations (Courant and Hilbert, 1989), the first-order terms affect only the amplitude of the

propagating waves.

From equation (5) we can derive a dispersion relation of the acoustic wave-equation in Rieman-

nian coordinates

−cζζk2
ζ −cξξk2

ξ −cηηk2
η−cξηkξkη =−(ωs)2 , (6)

wherekζ, kξ andkη are wavenumbers associated with the Riemannian coordinatesζ, ξ andη. For

one-way wavefield extrapolation, we need to solve the quadratic equation (6) for the wavenumber

of the extrapolation directionkζ, and select the solution with the appropriate sign for the desired

extrapolation direction:

kζ =

√
(ωs)2

cζζ
−

cξξ

cζζ
k2

ξ −
cηη

cζζ
k2

η−
cξη

cζζ
kξkη . (7)

The coordinate system coefficientsci j and the extrapolation slownesss can be combined to form

a reduced set of parameters. In 2D, for example, all coordinate-system coefficients can be repre-

sented by 2 parameters,a andb. Further extensions and implementation details of equation (7) are

described by Sava and Fomel (2006).

Extrapolation using equation (7) implies that the coefficients defining the medium and coordi-

nate system are not changing spatially. In this case, we ca perform extrapolation using a simple

phase-shift operation

Uτ+∆τ = Uτe
ikτ∆τ , (8)

whereUτ+∆τ andUτ represent the acoustic wavefield at two successive extrapolation steps, andkτ

is the extrapolation wavenumber defined by equation (7).
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For media with variability of the coefficientsci j due to either velocity variation or focus-

ing/defocusing of the coordinate system, we cannot use in extrapolation the wavenumber com-

puted directly using equation (7). Like for the case of extrapolation in Cartesian coordinates, we

can approximate the wavenumberkτ using series expansions relative to coefficientsci j present in

the dispersion relation (7). Such approximations can be implemented in the space-domain, in the

Fourier domain or in mixed space-Fourier domains (Sava and Fomel, 2006).

COORDINATE SYSTEMS

Riemannian wavefield extrapolation operates in coordinate systems that may or may not be defined

according to the model used for imaging. As indicated earlier, there are several options for con-

structing such coordinate systems, but the solution selected for the case described in this paper uses

ray tracing. In this case, the coordinate system is semi-orthogonal, i.e. the extrapolation direction is

orthogonal to the other two directions defining a 3D coordinate system. Cartesian coordinates are

special cases of Riemannian coordinates constructed by tracing rays orthogonal to a flat surface in

constant velocity.

The accuracy of one-way wavefield extrapolation operators maximizes in the direction of ex-

trapolation (vertical for downward continuation; along rays for Riemannian coordinate systems

constructed by ray tracing). In addition, for steeply dipping reflectors, the angle of reflection is

likely to be relatively small since this reflector is illuminated from a large distance using a small

limite acquisition aperture.

It is thus desirable to construct a coordinate system that minimizes the angles between the ex-

trapolation direction, and the directions of wave propagation and normal to the imaged reflectors.

One way to achieve this goal is to construct the coordinate system by tracing rays orthogonal to an
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imaginary line (plane in 3D) located behind the overhanging reflector.

These ideas are illustrated with a model based on the Sigsbee 2A synthetic (Paffenholz et al.,

2002) extended vertically and horizontally to allow diving waves from the overhanging salt flank to

arrive at the surface. Figure 1(a) shows an example of Riemannian coordinates constructed from ray

tracing from behind the salt flank reflector. For comparison, Figure 1(b) shows a Cartesian coordi-

nate system tilted relative to the vertical direction to minimize the angle between the extrapolation

direction and the normal to the reflector.

As indicated in the preceding section, we can describe Riemannian coordinate systems with

several coefficients incorporating all the information about the coordinate system shape and the

extrapolation slowness. For this 2D example, there are two coefficients,a andb depicted in Fig-

ures 2(a)-2(b) for the Riemannian coordinate system and in Figures 3(a)-3(b) for the tilted Cartesian

coordinate system. The plots depicta andb function of the Riemannian coordinates,τ andγ. τ has

time units and it represents the extrapolation direction, andγ is non-dimensional and represents an

index of the rays shot from the linear origin behind the imaged reflector.

Coefficienta describes the ratio of the extrapolation velocity to the velocity used for ray trac-

ing, and coefficientb describes the focusing/defocusing of the coordinate system. In both cases,

coefficienta 6= 1 since the velocity used for extrapolation is different from the velocity used for the

coordinate system. For the Cartesian coordinate system, coefficientb is a constant, as depicted in

Figure 3(b).

Figures 2(c) and 3(c) depict the acquisition surface and the salt body outline mapped in Rieman-

nian and tilted Cartesian coordinates, respectively. We can observe that in Riemannian coordinates,

the overhanging salt flank is nearly orthogonal to the extrapolation direction, unlike its layout in

tilted Cartesian coordinates. Therefore, imaging accuracy for such reflectors can be achieved in
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Riemannian coordinates with lower order extrapolation kernels than in the case of tilted Cartesian

coordinates, as demonstrated in the following section.

EXAMPLE

The Riemannian wavefield extrapolation imaging procedure is illustrated with the synthetic example

introduced in the preceding section. Exploding reflector data are modeled from all edges of the salt

body and recorded at all locations along the surface. The data are modeled using time-domain

finite-differences. No attempt is made to suppress the multiples, thus some of them are present in

the migrated images.

Figures 4(a)-4(b) depict wavefields at 5 and 10 seconds from the exploding reflector moment,

respectively. As expected, the wavefield originating on the overhanging salt flank dives and then

returns to the surface (Figure 5). Other parts of the wavefield either propagate straight up to the

surface, or propagate away from it and are not recorded. The imaged components of the recorded

wavefield are those overturning to the surface at locations intersected by the coordinate system.

The overturned data collected at the surface are imaged in Riemannian and tilted Cartesian

coordinates using the systems depicted in Figures 1(a)-1(b), characterized by coefficientsa andb

depicted in Figures 2(a)-2(b) and Figures 3(a)-3(b), respectively.

Figures 6(a)-6(b) show the migrated image obtained by wavefield extrapolation in Riemannian

coordinates. Panel 6(a) depicts the image in the Riemannian space, and panel 6(b) depicts the same

image after mapping to vertical Cartesian coordinates. Both overhanging reflectors, on opposite

sides of the salt body, are imaged correctly demonstrating successful imaging with overturning

waves in Riemannian coordinates.

Figures 7(a)-7(b) show analogous images obtained by extrapolation in tilted Cartesian coordi-
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nates. Imaging is performed using the same extrapolation as the one used for imaging in Riemannian

coordinates. The only difference is the coordinate system, therefore all image differences are caused

strictly by the coordinate system and not by the extrapolation or imaging operators.

Unlike for the preceding example, the overhanging salt flanks are not positioned correctly, as

seen by comparing Figures 6(a) and 7(a). The reason for the inaccurate reflector positioning is the

limited accuracy of the extrapolation operator at high angles relative to the extrapolation direction.

While the Riemannian coordinate system has the flexibility to minimize the angle between the

extrapolation direction and the direction of wave propagation, the tilted Cartesian coordinate system

cannot do that, thus requiring wavefield extrapolation at high angles. In this example, modifying the

tilt angle of the Cartesian coordinate system does not help since propagation at high angles occurs

both in the vicinity of the reflector and close to the acquisition surface. Furthermore, the Riemannian

coordinate system represents the natural direction of wave propagation, unlike the tilted Cartesian

coordinate system which is artificial and has no physical relation to the propagating waves.

CONCLUSIONS

This paper demonstrates the applicability of Riemannian wavefield extrapolation to the problem of

imaging overhanging salt flanks. Imaging such reflectors using one-way wavefield extrapolation in

Cartesian coordinates is impractical since waves propagate partially down, partially up. A possi-

ble solution to this problem consists of using tilted Cartesian coordinate systems. This procedure

partially reduces the angle between the direction of wave propagation and the direction of extrapo-

lation. However, even in this coordinate framework, waves need to be extrapolated at high angles

up to 90◦ which degrades the imaging accuracy.

In contrast, wavefield extrapolation in Riemannian coordinates has the flexibility to follow
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closely the paths of wave propagation. Therefore, the relative angle between the direction of extrap-

olation and the direction of wave propagation is much smaller than in the case of extrapolation in

tilted Cartesian coordinates, thus improving imaging accuracy.

Overturning reflections can, in principle, be imaged using Kirchhoff migration. However, this

imaging procedure has difficulty producing accurate images in complex geology characterized by

wave multipathing and sharp velocity variation. In contrast, imaging overturning reflections using

Riemannian wavefield extrapolation benefits from all characteristics of one-way wavefield extrapo-

lation, i.e. stability accross boundaries between media with large velocity variation, multipathing,

etc.
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1 Riemannian coordinate system (a) and tilted Cartesian coordinate system (b).
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ometry and salt body (c).

4 Wavefield from the overhanging salt flank att = 5,10 s from the moment of exploding

reflectors on the salt body.

5 Recorded data at the surface. Overturning energy is recorded fromx=−20 km tox= 0 km

at t = 15−25 s.

6 Migrated images using wavefield extrapolation in Riemannian coordinates with a Fourier

finite-differences (F15) kernel. Panel (a) depicts the image in Riemannian coordinates, and panel

(b) depicts the same image mapped to vertical Cartesian coordinates.

7 Migrated images using wavefield extrapolation in tilted Cartesian coordinates with a Fourier

finite-differences (F15) kernel. Panel (a) depicts the image in tilted Cartesian coordinates, and panel

(b) depicts the same image mapped to vertical Cartesian coordinates.
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(a) (b)

Figure 1: Riemannian coordinate system (a) and tilted Cartesian coordinate system (b). –
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(a)

(b)

(c)

Figure 2: Riemannian coordinate system coefficients, (a) and (b), and outline of acquisition geom-

etry and salt body (c).

–
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(a)

(b)

(c)

Figure 3: Tilted Cartesian coordinate system coefficients, (a) and (b), and outline of acquisition

geometry and salt body (c).

–
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(a) (b)

Figure 4: Wavefield from the overhanging salt flank att = 5,10 s from the moment of exploding

reflectors on the salt body.

–
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Figure 5: Recorded data at the surface. Overturning energy is recorded fromx=−20 km tox= 0 km

at t = 15−25 s.

–
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(a)

(b)

Figure 6: Migrated images using wavefield extrapolation in Riemannian coordinates with a Fourier

finite-differences (F15) kernel. Panel (a) depicts the image in Riemannian coordinates, and panel

(b) depicts the same image mapped to vertical Cartesian coordinates.

–
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(a)

(b)

Figure 7: Migrated images using wavefield extrapolation in tilted Cartesian coordinates with a

Fourier finite-differences (F15) kernel. Panel (a) depicts the image in tilted Cartesian coordinates,

and panel (b) depicts the same image mapped to vertical Cartesian coordinates.
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