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ABSTRACT

Riemannian wavefield extrapolation (RWE) is a technique for one-way extrapo-
lation of acoustic waves. RWE generalizes wavefield extrapolation by downward
continuation by considering coordinate systems different from conventional Carte-
sian. Coordinate systems can conform with the extrapolated wavefield, with the
velocity model or with the acquisition geometry.
When coordinate systems conform with the propagated wavefield, extrapolation
can be done accurately using low-order kernels. However, in complex media or in
cases the coordinate systems do not conform with the propagating wavefields, low
order kernels are not accurate enough and need to be replaced by more accurate,
higher order kernels. Since RWE is based on factorization of an acoustic wave-
equation, higher order kernels can be constructed using methods analogous with
the one employed for factorization of the acoustic wave-equation in Cartesian
coordinates. Thus, we can construct space-domain finite-differences as well as
mixed-domain techniques for extrapolation.
High-order RWE kernels improve the accuracy of extrapolation, particularly when
the Riemannian coordinate systems does not match closely the general direction
of wave propagation.

INTRODUCTION

Riemannian wavefield extrapolation (Sava and Fomel, 2005) generalizes solutions to
the Helmholtz equation in general Riemannian coordinate systems. Conventionally,
the Helmholtz equation is solved in Cartesian coordinates which represent special
cases of Riemannian coordinates. The main requirements imposed on the Riemannian
coordinate systems are that they maintain orthogonality between the extrapolation
coordinate and the other coordinates (2 in 3D, 1 in 2D). This requirement can be
relaxed when using an even more general form of RWE in non-orthogonal coordinates
(Shragge, 2007). In addition, it is desirable that the coordinate system does not trip-
licate, although numerical methods can stabilize extrapolation even in such situations
(Sava and Fomel, 2005). Thus, wavefield extrapolation in Riemannian coordinates
has the flexibility to be used in many applications where those basic conditions are
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fulfilled. Cartesian coordinate systems, including tilted coordinates, are special cases
of Riemannian coordinate systems.

Two straightforward applications of wave propagation in Riemannian coordinates
are extrapolation in a coordinate system created by ray tracing in a smooth back-
ground velocity (Sava and Fomel, 2005), and extrapolation with a coordinate system
created by conformal mapping of a given geometry to a regular space, for example
migration from topography (Shragge and Sava, 2005).

Coordinate systems created by ray tracing in a background medium often well
represent wavefield propagation. In this context, we effectively split wave propagation
effects into two parts: one part accounting for the general trend of wave propagation,
which is incorporated in the coordinate system, and the other part accounting for
the details of wavefield scattering due to rapid velocity variations. If the background
medium is close to the real one, the wave-propagation can be properly described with
low-order operators. However, if the background medium is far from the true one,
the wavefield departs from the general direction of the coordinate system and the
low-order extrapolators are not enough for accurate description of wave propagation.

For coordinate system describing a geometrical property of the medium (e.g. mi-
gration from topography), there is no guarantee that waves propagate in the direction
of extrapolation. This situation is similar to that of Cartesian coordinates when waves
propagate away from the vertical direction, except that conformal mapping gives us
the flexibility to define any coordinates, as required by acquisition. In this case, too,
low-order extrapolators are not enough for accurate description of wave propagation.

Therefore, there is need for higher-order Riemannian wavefield extrapolators in
order to handle correctly waves propagating obliquely relative to the coordinate sys-
tem. Usually, the high-order extrapolators are implemented as mixed operators, part
in the Fourier domain using a reference medium, part in the space domain as a correc-
tion from the reference medium. Many methods have been developed for high-order
extrapolation in Cartesian coordinates. In this paper, we explore some of those ex-
trapolators in Riemannian coordinates, in particular high-order finite-differences so-
lutions (Claerbout, 1985), and methods from the pseudo-screen family (Huang et al.,
1999) and Fourier finite-differences family (Ristow and Ruhl, 1994; Biondi, 2002).
In theory, any other high-order extrapolator developed in Cartesian coordinates can
have a correspondent in Riemannian coordinates.

In this paper, we implement the finite-differences portion of the high-order ex-
trapolators with implicit methods. Such solutions are accurate and robust, but they
face difficulties for 3D implementations because the finite-differences part cannot be
solved by fast tridiagonal solvers anymore and require more complex and costlier
approaches (Claerbout, 1998; Rickett et al., 1998). The problem of 3D wavefield
extrapolation is addressed in Cartesian coordinates either by splitting the one-way
wave-equation along orthogonal directions (Ristow and Ruhl, 1997), or by explicit
numerical solutions (Hale, 1991). Similar approaches can be employed for 3D Rie-
mannian extrapolation. The explicit solution seems more appropriate, since splitting
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is difficult due to the mixed terms of the Riemannian equations. In this paper, we
concentrate our attention to higher-order kernels implemented with implicit meth-
ods.

RIEMANNIAN WAVEFIELD EXTRAPOLATION

Riemannian wavefield extrapolation (Sava and Fomel, 2005) generalizes solutions to
the Helmholtz equation of the acoustic wave-equation

∆U = −ω2s2U , (1)

to coordinate systems that are different from simple Cartesian, where extrapolation
is performed strictly in the downward direction. In equation (1), s is slowness, ω is
temporal frequency, and U is a monochromatic acoustic wave. The Laplacian operator
∆ takes different forms according to the coordinate system used for discretization.

Assume that we describe the physical space in Cartesian coordinates x, y and z,
and that we describe a Riemannian coordinate system using coordinates ξ, η and ζ.
The two coordinate systems are related through a mapping

x = x (ξ, η, ζ) (2)

y = y (ξ, η, ζ) (3)

z = z (ξ, η, ζ) (4)

which allows us to compute derivatives of the Cartesian coordinates relative to the
Riemannian coordinates.

A special case of the mapping (2)-(4) is defined when the Riemannian coordinate
system is constructed by ray tracing. The coordinate system is defined by traveltime
τ and shooting angles, for example. Such coordinate systems have the property that
they are semi-orthogonal, i.e. one axis is orthogonal on the other two, although the
later axes are not necessarily orthogonal on one-another.

Following the derivation in Sava and Fomel (2005), the acoustic wave-equation in
Riemannian coordinates can be written as:

cζζ
∂2U
∂ζ2

+ cξξ
∂2U
∂ξ2

+ cηη
∂2U
∂η2

+ cζ
∂U
∂ζ

+ cξ
∂U
∂ξ

+ cη
∂U
∂η

+ cξη
∂2U
∂ξ∂η

= − (ωs)2 U , (5)

where coefficients cij are functions of the coordinate system and can be computed
numerically for any given coordinate system mapping (2)-(4).

The acoustic wave-equation in Riemannian coordinates (5) contains both first and
second order terms, in contrast with the normal Cartesian acoustic wave-equation
which contains only second order terms. We can construct an approximate Rieman-
nian wavefield extrapolation method by dropping the first-order terms in equation (5).
This approximation is justified by the fact that, according to the theory of characteris-
tics for second-order hyperbolic equations (Courant and Hilbert, 1989), the first-order
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terms affect only the amplitude of the propagating waves. To preserve the kinematics,
it is sufficient to retain only the second order terms of equation (5):

cζζ
∂2U
∂ζ2

+ cξξ
∂2U
∂ξ2

+ cηη
∂2U
∂η2

+ cξη
∂2U
∂ξ∂η

= − (ωs)2 U . (6)

From equation (6) we can derive the following dispersion relation of the acoustic
wave-equation in Riemannian coordinates

−cζζk
2
ζ − cξξk

2
ξ − cηηk

2
η − cξηkξkη = − (ωs)2 , (7)

where kζ , kξ and kη are wavenumbers associated with the Riemannian coordinates ζ, ξ
and η. Coefficients cξξ, cηη and cζζ are known quantities defined using the coordinate
system mapping (2)-(4). For one-way wavefield extrapolation, we need to solve the
quadratic equation (7) for the wavenumber of the extrapolation direction kζ , and
select the solution with the appropriate sign for the desired extrapolation direction:

kζ =

√√√√(ωs)2

cζζ

− cξξ

cζζ

k2
ξ −

cηη

cζζ

k2
η −

cξη

cζζ

kξkη . (8)

The 2D equivalent of equation (8) takes the form:

kζ =

√√√√(ωs)2

cζζ

− cξξ

cζζ

k2
ξ . (9)

In ray coordinates, defined by ζ ≡ τ (propagation time) and ξ ≡ γ (shooting angle),
we can re-write equation (9) as

kτ =

√
(ωsα)2 −

(
α

J
kγ

)2

, (10)

where α represents velocity and J represents geometrical spreading. The quantities α
and J characterize the extrapolation coordinate system: α describes the velocity used
for construction of ray coordinate system; J describes the spreading or focusing of the
coordinate system. In general, the velocity used for construction of the coordinate
system is different from the velocity used for extrapolation, as suggested by Sava and
Fomel (2005) and illustrated later in this paper.

We can further simplify the computations by introducing the notation

a = sα , (11)

b =
α

J
, (12)

thus equation (10) taking the form

kτ =
√

(ωa)2 − (bkγ)
2 . (13)

For Cartesian coordinate systems, α = 1 and J = 1, equation (13) reduces to the
known dispersion relation

kz =
√

ω2s2 − k2
x , (14)

where kz and kx are depth and position extrapolation wavenumbers.
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EXTRAPOLATION KERNELS

Extrapolation using equation (13) implies that the coefficients defining the problem,
a and b, are not changing spatially. In this case, we can perform extrapolation using
a simple phase-shift operation

Uτ+∆τ = Uτe
ikτ∆τ , (15)

where Uτ+∆τ and Uτ represent the acoustic wavefield at two successive extrapolation
steps, and kτ is the extrapolation wavenumber defined by equation (13).

For media with lateral variability of the coefficients a and b, due to either velocity
variation or focusing/defocusing of the coordinate system, we cannot use in extrap-
olation the wavenumber computed directly using equation (13). Like for the case of
extrapolation in Cartesian coordinates, we need to approximate the wavenumber kτ

using expansions relative to a and b. Such approximations can be implemented in the
space-domain, in the Fourier domain or in mixed space-Fourier domains.

Space-domain extrapolation

The space-domain finite-differences solution to equation (13) is derived based on a
square-root expansion as suggested by Francis Muir (Claerbout, 1985):

kτ ≈ ωa + ω
ν
(

kγ

ω

)2

µ− ρ
(

kγ

ω

)2 , (16)

where the coefficients µ, ν and ρ take the form derived in Appendix A:

ν = −c1a

(
b

a

)2

, (17)

µ = 1 , (18)

ρ = c2

(
b

a

)2

. (19)

In the special case of Cartesian coordinates, a = s and b = 1, equation (16) takes the
familiar form

kτ ≈ ωs− ω

c1
s

(
kγ

ω

)2

1− c2
s2

(
kγ

ω

)2 , (20)

where the coefficients c1 and c2 take different values for different orders of Muir’s
expansion: (c1, c2) = (0.50, 0.00) for the 15◦ equation, and (c1, c2) = (0.50, 0.25) for
the 45◦ equation, etc. For extrapolation in Riemannian coordinates, the meaning of
15◦, 45◦ etc is not defined. We use this terminology here to indicate orders of accuracy
comparable to the ones defined in Cartesian coordinates.



Sava and Fomel 6 Riemannian wavefield extrapolation

Mixed-domain extrapolation

Mixed-domain solutions to the one-way wave equation consist of decompositions of the
extrapolation wavenumber defined in equation (13) in terms computed in the Fourier
domain for a reference of the extrapolation medium, followed by a finite-differences
correction applied in the space-domain. For equation (13), a generic mixed-domain
solution has the form:

kτ ≈ kτ 0 + ω (a− a0) + ω
ν
(

kγ

ω

)2

µ− ρ
(

kγ

ω

)2 , (21)

where a0 and b0 are reference values for the medium characterized by the parameters
a and b, and the coefficients µ, ν and ρ take different forms according to the type
of approximation. As for usual Cartesian coordinates, kτ 0 is applied in the Fourier
domain, and the other two terms are applied in the space domain. If we limit the
space-domain correction to the thin lens term, ω (a− a0), we obtain the equivalent of
the split-step Fourier (SSF) method (Stoffa et al., 1990) in Riemannian coordinates.

Appendix A details the derivations for two types of expansions known by the
names of pseudo-screen (Huang et al., 1999), and Fourier finite-differences (Ristow
and Ruhl, 1994; Biondi, 2002). Other extrapolation approximations are possible, but
are not described here, for simplicity.

• Pseudo-screen method:

The coefficients for the pseudo-screen approximation to equation (21) are

ν = a0

[
c1

(
a

a0

− 1
)
−
(

b

b0

− 1

)](
b0

a0

)2

, (22)

µ = 1 , (23)

ρ = 3c2

(
b0

a0

)2

, (24)

where a0 and b0 are reference values for the medium characterized by param-
eters a and b. In the special case of Cartesian coordinates, a = s and b = 1,
equation (21) with coefficients equation (22) takes the familiar form

kτ ≈ kτ 0 + ω

1 +

c1
s2
0

(
kγ

ω

)2

1− 3c2
s2
0

(
kγ

ω

)2

 (s− s0) , (25)

where the coefficients c1 and c2 take different values for different orders of the
finite-differences term: (c1, c2) = (0.50, 0.00), (c1, c2) = (0.50, 0.25), etc. When
(c1, c2) = (0.00, 0.00) we obtain the usual split-step Fourier equation (Stoffa
et al., 1990).
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• Fourier finite-differences method:

The coefficients for the Fourier finite-differences solution to equation (21) are

ν =
1

2
δ2
1 , (26)

µ = δ1 , (27)

ρ =
1

4
δ2 , (28)

where, by definition,

δ1 = a

(
b

a

)2

− a0

(
b0

a0

)2

, (29)

δ2 = a

(
b

a

)4

− a0

(
b0

a0

)4

. (30)

a0 and b0 are reference values for the medium characterized by the parame-
ters a and b. In the special case of Cartesian coordinates, a = s and b = 1,
equation (21) with coefficients equation (26) takes the familiar form:

kτ ≈ kτ 0 + ω

1 +

c1
ss0

(
kγ

ω

)2

1− c2

(
1
s2 + 1

ss0
+ 1

s2
0

) (
kγ

ω

)2

 (s− s0) , (31)

where the coefficients c1 and c2 take different values for different orders of the
finite-differences term: (c1, c2) = (0.50, 0.00) for 15◦, (c1, c2) = (0.50, 0.25) for
45◦, etc. When c1 = c2 = 0.0 we obtain the usual split-step Fourier equation
(Stoffa et al., 1990).

EXAMPLES

We illustrate the higher-order RWE extrapolators with impulse responses for two
synthetic models.

The first example is based on the Marmousi model (Versteeg, 1994). We construct
the coordinate system by ray tracing from a point source at the surface in a smooth
version of the real velocity model. Figure 1 shows the velocity model with the coor-
dinate system overlaid, and Figures 2(a)-2(b) show the coordinate system coefficients
a and b defined in equations (11) and (12).

The goal of this test model is to illustrate the higher-order extrapolation kernels
in a fairly complex model using a simple coordinate system. In this way, the coor-
dinate system and the real direction of wave propagation depart from one-another,
thus accurate extrapolation requires higher order kernels. The coordinate system is
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Figure 1: Velocity map and Riemannian coordinate system for the Marmousi example.

(a) (b)

Figure 2: Coordinate system coefficients defined in equations (11) and (12). (a)
Parameter a = sα in ray coordinates. (b) Parameter b = α/J in ray coordinates.
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constructed from a point at the location of the wave source. This setting is simi-
lar to the case of extrapolation from a point source in Cartesian coordinates, where
high-angle 2 propagation requires high-order kernels.

Figures 3(a)-3(d) show impulse responses for a point source computed with various
extrapolators in ray coordinates (τ and γ). Panels (a) and (c) show extrapolation with
the 15◦ and 60◦, respectively. Panels (b) and (d) show extrapolation with the pseudo-
screen (PSC) equation, and the Fourier finite-differences (FFD) equation, respectively.
All plots are displayed in ray coordinates. We can observe that the angular accuracy of
the extrapolator improves for the more accurate extrapolators. The finite-differences
solutions (panels a and c) show the typical behavior of such solutions for the 15◦

and 60◦ equations (e.g. the cardioid for 60◦), but in the more general setting of
Riemannian extrapolation. The mixed-domain extrapolators (panels b and d) are
more accurate the finite-differences extrapolators. The main differences occur at the
highest propagation angles. As for the case of Cartesian extrapolation, the most
accurate kernel of those compared is the equivalent of Fourier finite-differences.

Figures 4(a)-4(d) show the corresponding plots in Figures 3(a)-3(d) mapped in the
physical coordinates. The overlay is an outline of the extrapolation coordinate system.
After re-mapping to the physical space, the comparison of high-angle accuracy for the
various extrapolators is more apparent, since it now has physical meaning.

Figures 5(a)-5(b) show a side-by-side comparison of equivalent extrapolators in
Riemannian and Cartesian coordinates. The impulse response in Figure 5(a) shows
the limits of Cartesian extrapolation in propagating waves correctly up to 90◦. The
Riemannian extrapolator in Figure 5(b) handles much better waves propagating at
high angles, including energy that is propagating upward relative to the physical
coordinates.

The second example is based on a model with a large lateral gradient which
makes an incident plane wave overturn. A small Gaussian anomaly, not used in the
construction of the coordinate system, forces the propagating wave to triplicate and
move at high angles relative to the extrapolation direction. Figure 6 shows the velocity
model with the coordinate system overlaid. Figures 7(a)-7(b) show the coordinate
system coefficients, a and b defined in equations (11) and (12).

The goal of this model is to illustrate Riemannian wavefield extrapolation in a
situation which cannot be handled correctly by Cartesian extrapolation, no matter
how accurate an extrapolator we use. In this example, an incident plane wave is
overturning, thus becoming evanescent for the solution constructed in Cartesian co-
ordinates. Furthermore, the Gaussian anomaly shown in Figure 7(a) causes wavefield
triplication, thus requiring high-order kernels for the Riemannian extrapolator.

Figures 8(a)-8(d) show impulse responses for an incident plane wave computed

2If the extrapolation axis is time, the meaning of higher angle accuracy is not well defined.
We can use this terminology to associate the mathematical meaning of the approximation for the
square-root by analogy with the Cartesian equivalents.
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(a) (b)

(c) (d)

Figure 3: Migration impulse responses in Riemannian coordinates. (a) Extrapola-
tion with the 15◦ finite-differences equation. (c) Extrapolation with the 60◦ finite-
differences equation. (b) Extrapolation with the pseudo-screen (PSC) equation. (d)
Extrapolation with the Fourier finite-differences (FFD) equation.



Sava and Fomel 11 Riemannian wavefield extrapolation

(a) (b)

(c) (d)

Figure 4: Migration impulse responses in Riemannian coordinates after mapping to
Cartesian coordinates. (a) Extrapolation with the 15◦ finite-differences equation. (c)
Extrapolation with the 60◦ finite-differences equation. (b) Extrapolation with the
pseudo-screen (PSC) equation. (d) Extrapolation with the Fourier finite-differences
(FFD) equation.
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(a)

(b)

Figure 5: Comparison of extrapolation in Cartesian and Riemannian coordinates.
(a) Split-step Fourier extrapolation in Cartesian coordinates. (b) Split-step Fourier
extrapolation in Riemannian coordinates.
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Figure 6: Velocity map and Riemannian coordinate system for the large-gradient
model experiment.

(a) (b)

Figure 7: Coordinate system coefficients defined in equations (11) and (12). (a)
Parameter a = sα in ray coordinates. (b) Parameter b = α/J in ray coordinates.
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with various extrapolators in ray coordinates (τ and γ). Panels (a) and (c) show ex-
trapolation with the 15◦ and 60◦ finite-differences equations, respectively. Panel (b)
and (d) show extrapolation with the pseudo-screen (PSC) equation and the Fourier
finite-differences (FFD) equation, respectively. All plots are displayed in ray coor-
dinates. As for the preceding example, we observe higher angular accuracy as we
increase the order of the extrapolator. The equivalent FFD extrapolator shows the
highest accuracy of all tested extrapolators.

As in the preceding example, Figures 9(a)-9(d) show the corresponding plots in
Figures 8(a)-8(d) mapped in the physical coordinates. The overlay is an outline of
the extrapolation coordinate system.

Finally, figures 10(a) and 10(b) show a side-by-side comparison of equivalent ex-
trapolators in Riemannian and Cartesian coordinates. The impulse response in Fig-
ure 10(a) clearly shows the failure of the Cartesian extrapolator in propagating waves
correctly even up to 90◦. The Riemannian extrapolator in Figure 10(b) handles much
better overturning waves, including energy that is propagating upward relative to the
vertical direction.

(a) (b)

(c) (d)

Figure 8: Migration impulse responses in Riemannian coordinates. (a) Extrapola-
tion with the 15◦ finite-differences equation. (c) Extrapolation with the 60◦ finite-
differences equation. (b) Extrapolation with the pseudo-screen (PSC) equation. (d)
Extrapolation with the Fourier finite-differences (FFD) equation.
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(a) (b)

(c) (d)

Figure 9: Migration impulse responses in Riemannian coordinates after mapping to
Cartesian coordinates. (a) Extrapolation with the 15◦ finite-differences equation. (c)
Extrapolation with the 60◦ finite-differences equation. (b) Extrapolation with the
pseudo-screen (PSC) equation. (d) Extrapolation with the Fourier finite-differences
(FFD) equation.
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(a)

(b)

Figure 10: Comparison of extrapolation in Cartesian and Riemannian coordinates.
(a) Split-step Fourier extrapolation in Cartesian coordinates. (b) Split-step Fourier
extrapolation in Riemannian coordinates.
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DISCUSSION

Accurate wave-equation migration using Riemannian wavefield extrapolation requires
a choice of coordinate system that exploits its higher extrapolation accuracy. An
effective choice of coordinate system would be one that minimizes the difference
between the extrapolation direction and the direction of wave propagation. If this
condition is fulfilled, we can achieve high-angle accuracy using low-order extrapolation
kernels. Otherwise, we need to extrapolate seismic wavefields with high-order kernels,
like the ones described in this paper.

Shot-record migration requires selection of coordinate systems for the source and
receiver wavefields. Optimal selection of coordinate systems in this situation is not
a trivial task, since the source and receiver wavefields are optimally described by
different coordinate systems which also vary with location. However, if we employ
high-order extrapolation kernels, different seismic experiments may share the same
approximately optimal coordinate system. An easy way to illustrate this idea is
represented by imaging in (tilted) Cartesian coordinate systems, which are just special
cases of Riemannian coordinates (Sava and Fomel, 2006). A complete treatment of
this topic remains subject for future research.

CONCLUSIONS

Higher-order Riemannian wavefield extrapolation is needed when the coordinate sys-
tem does not closely conform with the general direction of wavefield propagation.
This situation occurs, for example, when the coordinate system is created by ray
tracing in a medium that is different from the one used for extrapolation, or when
the coordinate system is constructed based on geometrical properties of the acquisi-
tion geometry (e.g. migration from topography). Space-domain and mixed-domain
finite-difference solutions to Riemannian wavefield extrapolation improve the angular
accuracy. 3D solutions can be addressed with explicit finite-differences or by us-
ing splitting and implicit methods, similarly with the techniques used for Cartesian
extrapolation.

ACKNOWLEDGMENT

ExxonMobil provided partial financial support of this research.



Sava and Fomel 18 Riemannian wavefield extrapolation

APPENDIX A

SPACE-DOMAIN FINITE-DIFFERENCES

Starting from equation (13), based on the Muir expansion for the square-root (Claer-
bout, 1985), we can write successively:

kτ = ωa

√√√√1−
(

bkγ

aω

)2

(A-1)

≈ ωa

1− c1

(
bkγ

aω

)2

1− c2

(
bkγ

aω

)2

 (A-2)

≈ ωa− ω
c1a

(
b
a

)2 (kγ

ω

)2

1− c2

(
b
a

)2 (kγ

ω

)2 . (A-3)

If we make the notations

ν = −c1a

(
b

a

)2

, (A-4)

µ = 1 , (A-5)

ρ = c2

(
b

a

)2

. (A-6)

we obtain the finite-differences solution to the one-way wave equation in Riemannian
coordinates:

kτ ≈ ωa + ω
ν
(

kγ

ω

)2

µ− ρ
(

kγ

ω

)2 . (A-7)

MIXED DOMAIN — PSEUDO-SCREEN

The pseudo-screen solution to equation (13) derives from a first-order expansion of the
square-root around a0 and b0 which are reference values for the medium characterized
by the parameters a and b:

kτ ≈ kτ 0 +
∂kτ

∂a

∣∣∣∣∣
a0,b0

(a− a0) +
∂kτ

∂b

∣∣∣∣∣
a0,b0

(b− b0) . (A-8)

The partial derivatives relative to a and b, respectively, are:

∂kτ

∂a

∣∣∣∣∣
a0,b0

= ω
1√

1−
(

b0kγ

a0ω

)2
≈ ω

1 +
c1

(
b0kγ

a0ω

)2

1− 3c2

(
b0kγ

a0ω

)2

 , (A-9)

∂kτ

∂b

∣∣∣∣∣
a0,b0

= −ω
b0

a0

(
kγ

ω

)2
1√

1−
(

b0kγ

a0ω

)2
≈ −ω

a0

b0

(
b0kγ

a0ω

)2

. (A-10)
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Therefore, the pseudo-screen equation becomes

kτ ≈ kτ 0 + ω (a− a0) + ω
a0

[
c1

(
a
a0
− 1

)
−
(

b
b0
− 1

)] (
b0
a0

)2 (kγ

ω

)2

1− 3c2

(
b0
a0

)2 (kγ

ω

)2 . (A-11)

If we make the notations

ν = a0

[
c1

(
a

a0

− 1
)
−
(

b

b0

− 1

)](
b0

a0

)2

(A-12)

µ = 1 (A-13)

ρ = 3c2

(
b0

a0

)2

(A-14)

we obtain the mixed-domain pseudo-screen solution to the one-way wave equation in
Riemannian coordinates:

kτ ≈ kτ 0 + ω (a− a0) + ω
ν
(

kγ

ω

)2

µ− ρ
(

kγ

ω

)2 . (A-15)

MIXED DOMAIN — FOURIER FINITE-DIFFERENCES

The pseudo-screen solution to equation (13) derives from a fourth-order expansion of
the square-root around (a0, b0) and (a, b):

kτ ≈ ωa

1 +
1

2

(
bkγ

aω

)2

+
1

8

(
bkγ

aω

)4
 , (A-16)

kτ 0 ≈ ωa0

1 +
1

2

(
b0kγ

a0ω

)2

+
1

8

(
b0kγ

a0ω

)4
 . (A-17)

If we subtract equations (A-16) and (A-17), we obtain the following expression for
the wavenumber along the extrapolation direction kτ :

kτ ≈ kτ 0 + ω (a− a0) +
1

2
ω

a( b

a

)2

− a0

(
b0

a0

)2
(kγ

ω

)2

+
1

8
ω

a( b

a

)4

− a0

(
b0

a0

)4
(kγ

ω

)4

. (A-18)

We can make the notations

δ1 = a

(
b

a

)2

− a0

(
b0

a0

)2

, (A-19)

δ2 = a

(
b

a

)4

− a0

(
b0

a0

)4

, (A-20)
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therefore equation (A-18) can be written as

kτ = kτ 0 + ω (a− a0) +
1

2
ωδ1

(
kγ

ω

)2

+
1

8
ωδ2

(
kγ

ω

)4

. (A-21)

Using the approximation

1

2
δ1u

2 +
1

8
δ2u

4 ≈
1
2
δ2
1u

2

δ1 − 1
4
δ2u2

, (A-22)

we can write

kτ = kτ 0 + ω (a− a0) + ω

1
2
δ2
1

(
kγ

ω

)2

δ1 − 1
4
δ2

(
kγ

ω

)2 . (A-23)

If we make the notations

ν =
1

2
δ2
1 , (A-24)

µ = δ1 , (A-25)

ρ =
1

4
δ2 , (A-26)

we obtain the mixed-domain Fourier finite-differences solution to the one-way wave
equation in Riemannian coordinates:

kτ ≈ kτ 0 + ω (a− a0) + ω
ν
(

kγ

ω

)2

µ− ρ
(

kγ

ω

)2 . (A-27)
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