An example *Geophysics* article,

with a two-line title

(September 5, 2018)

GEO-Example

Running head: *Geophysics* example

ABSTRACT

This is an example of using geophysics.cls for writing *Geophysics* papers.
INTRODUCTION

This is an introduction. \LaTeX{} is a powerful document typesetting system (Lamport, 1994). An excellent reference is (Kopka and Daly, 2004). The new \texttt{geophysics.cls} class complies with the \LaTeX{}2e standard. We had something else written here but decided to get rid of it.

THEORY

This is another section.

Equations

Section headings should be capitalized. Subsection headings should only have the first letter of the first word capitalized.

Here are examples of equations involving vectors and tensors:

\[
\mathbf{R} = \begin{pmatrix}
R_{XX} & R_{YX} \\
R_{YX} & R_{YY}
\end{pmatrix} = \mathbf{P}_{M\rightarrow R} \mathbf{D} \mathbf{P}_{S\rightarrow M} \mathbf{S},
\]

and

\[
R_{j,m}(\omega) = \sum_{n=1}^{N} P_{j}^{(n)}(x_{R}) D^{(n)}(\omega) P_{m}^{(n)}(x_{S}).
\]

Note that the macro for the \texttt{\textbackslash tensor} command has been changed to force tensors to be bold uppercase, in compliance with current SEG submission standards. This is so that documents typeset to the old standards will print out according to the new ones: e.g., tensor \mathbf{T} (note converted to uppercase).
Figures

Figure 1 shows what it is about.

Multiplot

Sometimes it is convenient to put two or more figures from different files in an array (see Figure 2). Individual plots are Figures 2a and 2b.

The first argument of the \texttt{multiplot} command specifies the number of plots per row.

Tables

The discussion is summarized in Table 1.

ACKNOWLEDGMENTS

I wish to thank Ivan Pšenčík and Frédéric Billette for having names with non-English letters in them. I wish to thank Červený (2000) for providing an example of how to make a bib file that includes an author whose name begins with a non-English character and Forgues (1996) for providing both an example of referencing a Ph.D. thesis and yet more non-English characters.

APPENDIX A

APPENDIX EXAMPLE

According to the new SEG standard, appendices come before references.
\[\frac{\partial U}{\partial z} = \left\{ \sqrt{\frac{1}{v^2} - \left[\frac{\partial t}{\partial g} \right]^2} + \sqrt{\frac{1}{v^2} - \left[\frac{\partial t}{\partial s} \right]^2} \right\} \frac{\partial U}{\partial t} \]

(A-1)

It is important to get equation A-1 right. See also Appendix B.

APPENDIX B

ANOTHER APPENDIX

\[\frac{\partial U}{\partial z} = \left\{ \sqrt{\frac{1}{v^2} - \left[\frac{\partial t}{\partial g} \right]^2} + \sqrt{\frac{1}{v^2} - \left[\frac{\partial t}{\partial s} \right]^2} \right\} \frac{\partial U}{\partial t} \]

(B-1)

Too lazy to type a different equation but note the numeration.

The error comparison is provided in Figure B-1.

APPENDIX C

THE SOURCE OF THIS DOCUMENT

```latex
%\documentclass[paper]{geophysics}
\documentclass[manuscript, revised]{geophysics}

% An example of defining macros
\newcommand{\rs}[1]{\mathstrut\mbox{\scriptsize\rm #1}}
\newcommand{\rr}[1]{\mbox{\rm #1}}

\begin{document}
\title{An example \emph{Geophysics} article, \ with a two-line title}
```


This is an example of using \textsf{geophysics.cls} for writing
\textbf{Geophysics} papers.

\end{abstract}

\section{Introduction}

This is an introduction. \LaTeX\ is a new\textit{powerful} document typesetting system \cite{lamport}. An excellent reference is \cite{kopka}. The new \texttt{geophysics.cls} class complies with the \LaTeX2e\ standard. \old{We had something else written here but decided to get rid of it}.

\section*{Theory}

This is another section.

\subsection{Equations}

Section headings should be capitalized. Subsection headings should only have the first letter of the first word capitalized.

Here are examples of equations involving vectors and tensors:
\begin{equation}
\mathbf{R} = \\
\begin{pmatrix}
R_{\text{XX}} & R_{\text{YX}} \\
R_{\text{XY}} & R_{\text{YY}}
\end{pmatrix}
\end{equation}
\begin{equation}
\begin{array}{c}
tensor{P}_{M\rightarrow R} \; \tensor{D} \; \tensor{P}_{S\rightarrow M} \\
\end{array},
\label{SVD}
\end{equation}
and
\begin{equation}
\begin{array}{c}
R_{j,m}(\omega) = \\
\sum_{n=1}^{N} \, \, P_{j}^{(n)}(\mathbf{x}_R) \, \, D^{(n)}(\omega) \, \, P_{m}^{(n)}(\mathbf{x}_S) \\
\end{array}.
\label{SVDray}
\end{equation}

Note that the macro for the \verb#\tensor# command has been changed to force tensors to be bold uppercase, in compliance with current SEG submission standards. This is so that documents typeset to the old standards will print out according to the new ones: e.g., tensor \tensor{t} (note converted to uppercase).

\subsection*{Figures}
\renewcommand{\figdir}{Fig} % figure directory
Figure~\ref{fig:waves} shows what it is about.

\plot{waves}{width=\textwidth}

{This figure is specified in the document by \texttt{
\backslash plot\{waves\}\{width=\backslash textwidth\}\{This caption.\}.}

\subsection{Multiplot}

Sometimes it is convenient to put two or more figures from different files in an array (see Figure~\ref{fig:exph,exgr}). Individual plots are Figures~\ref{fig:exph} and~\ref{fig:exgr}.

\multiplot{2}{exph,exgr}{width=0.4\textwidth}

{This figure is specified in the document by \texttt{
\backslash multiplot\{2\}\{exph,exgr\}\{width=0.4\backslash textwidth\}\{This caption.\}.}

The first argument of the \texttt{multiplot} command specifies the number of plots per row.

\subsection{Tables}

The discussion is summarized in Table~\ref{tbl:example}.
This table is specified in the document by \texttt{tabl\{example\}\{This caption.\}\{\ldots\}}.

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
\multicolumn{3}{|c|}{Table Example} \\
\hline
\parbox{1in}{migration\rule[{-2ex}]{0ex}{5ex}} & \omega \rightarrow k_z & k_y^2+k-z^2\cos^2 \psi=4\omega^2/v^2 \\
\hline
\parbox{1in}{zero-offset\diffraction\rule[{-4ex}]{0ex}{8ex}} & k_z\rightarrow\omega_0 & k_y^2+k_z^2=4\omega_0^2/v^2 \\
\hline
\parbox{1in}{DMO+NMO\rule[{-2ex}]{0in}{5ex}} & \omega \rightarrow \omega_0 & \frac{1}{4}v^2k_y^2\sin^2\psi+\omega_0^2\cos^2\psi=\omega^2 \\
\hline
\parbox{1in}{radial DMO\rule[{-2ex}]{0in}{5ex}} & \omega \rightarrow \omega_s & \frac{1}{4}v^2k_y^2\sin^2\psi+\omega_s^2=\omega^2 \\
\hline
\end{tabular}
\end{center}
radial NMO rule [-2ex]{0in}{5ex} & $\omega_s \rightarrow \omega_0$ & $\omega_0 \cos \psi = \omega_s$
\hline
\end{tabular}
\end{center}

\section{ACKNOWLEDGMENTS}

I wish to thank Ivan P\'s\'en\'c\'\i k and Fr\'ed\'eric Billette for having names with non-English letters in them. I wish to thank \cite{Cerveny} for providing an example of how to make a bib file that includes an author whose name begins with a non-English character and \cite{forgues96} for providing both an example of referencing a Ph.D. thesis and yet more non-English characters.

\append{Appendix example}
\label{example}

According to the new SEG standard, appendices come before references.

\begin{equation}
\frac{\partial U}{\partial z} = \left\{ \begin{array}{l}
\end{equation}
\sqrt{\frac{1}{v^2} - \left[\frac{\partial t}{\partial g}\right]^2} + \sqrt{\frac{1}{v^2} - \left[\frac{\partial t}{\partial s}\right]^2}

\frac{\partial U}{\partial t}

\label{eqn:partial}
\end{equation}

It is important to get equation \ref{eqn:partial} right. See also Appendix \ref{equations}.

\append{Another appendix}

\begin{equation}
\frac{\partial U}{\partial z} = \left\{
\sqrt{\frac{1}{v^2} - \left[\frac{\partial t}{\partial g}\right]^2} + \sqrt{\frac{1}{v^2} - \left[\frac{\partial t}{\partial s}\right]^2}
\right\} \frac{\partial U}{\partial t}
\label{eqn:partial2}
\end{equation}

Too lazy to type a different equation but note the numeration.

The error comparison is provided in Figure \ref{fig:errgrp}.

11
\sideplot{errgrp}{width=0.8\textwidth}

{This figure is specified in the document by \texttt{
 \backslashsideplot\{errgrp\}\{width=0.8\backslashtext\-width\}\{This caption.$\}\}}.

\append{The source of this document}

\verbatiminput{geophysics_example.ltx}

\append{The source of the bibliography}

\verbatiminput{example.bib}

\newpage

\bibliographystyle{seg} \% style file is seg.bst
\bibliography{example}

\end{document}

APPENDIX D

THE SOURCE OF THE BIBLIOGRAPHY

@Book{lamport,
author = {L[eslie] Lamport},
title = {{\LaTeX}: A Document Preparation System},
publisher = {Addison-Wesley},
year = 1994
}

@Book{kopka,
title = {Guide to {\LaTeX}},
publisher = {Addison-Wesley},
year = 2004
}

@preamble{"\newcommand{\SortNoop}[1]{}}

@Book{Cerveny,
 author = {V[] \SortNoop{Cerveny}\v{C}erven'y},
title = {Seismic Ray Method},
year = 2000,
publisher = {Cambridge University Press}
}

@PHDTHESIS{forgues96,
 author = {E. Forgues},
title = {Inversion lineari\'ee multi-param\'etres via la th\'eorie des rais},
school = {Institut Français du Pétrole - University Paris VII},

year = {1996}

}
REFERENCES

LIST OF TABLES

1 This table is specified in the document by \texttt{\tabl{example}{This caption.}{...}}.
LIST OF FIGURES

1 This figure is specified in the document by \plot{waves}{width=\textwidth}{This caption.}.

2 This figure is specified in the document by
\multilplot{2}{exph,exgr}{width=0.4\textwidth}{This caption.}.

B-1 This figure is specified in the document by \sideplot{errgrp}{width=0.8\textwidth}{This caption.}.
Figure 1: This figure is specified in the document by

\plotwaves\{width=textwidth\}{This caption.}.

Dellinger & Fomel – GEO-Example
Figure 2: This figure is specified in the document by
\texttt{\textbackslash multiplot\{2\}\{exph,exgr\}\{width=0.4\textwidth\}\{This caption.\}.

Dellinger & Fomel – GEO-Example
Table 1: This table is specified in the document by \texttt{\tabl{example}}\{This caption.\}{...}.

<table>
<thead>
<tr>
<th>Case</th>
<th>Transformation</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>migration</td>
<td>$\omega \rightarrow k_z$</td>
<td>$k_y^2 + k - z^2 \cos^2 \psi = 4\omega^2/v^2$</td>
</tr>
<tr>
<td>zero-offset</td>
<td>$k_z \rightarrow \omega_0$</td>
<td>$k_y^2 + k_z^2 = 4\omega_0^2/v^2$</td>
</tr>
<tr>
<td>diffraction</td>
<td>$\omega \rightarrow \omega_0$</td>
<td>$\frac{1}{4}v^2k_y^2 \sin^2 \psi + \omega_0^2 \cos^2 \psi = \omega^2$</td>
</tr>
<tr>
<td>DMO+NMO</td>
<td>$\omega \rightarrow \omega_s$</td>
<td>$\frac{1}{4}v^2k_y^2 \sin^2 \psi + \omega_s^2 = \omega^2$</td>
</tr>
<tr>
<td>radial DMO</td>
<td>$\omega \rightarrow \omega_s$</td>
<td>$\omega_0 \cos \psi = \omega_s$</td>
</tr>
<tr>
<td>radial NMO</td>
<td>$\omega_s \rightarrow \omega_0$</td>
<td></td>
</tr>
</tbody>
</table>
Figure B-1: This figure is specified in the document by \
sideplot{errgrp}{width=0.8\textwidth}{This caption.}.

Dellinger & Fomel – GEO-Example