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Abstract

Reciprocity theorems for perturbed acoustic media are provided in the form

of convolution- and correlation-type theorems. These reciprocity relations are

particularly useful in the general treatment of both forward and inverse scatter-

ing problems. Using Green’s functions to describe perturbed and unperturbed

waves in two distinct wave states, representation theorems for scattered waves

are derived from the reciprocity relations. While the convolution-type theo-

rems can be manipulated to obtain scattering integrals that are analogous to

the Lippmann-Schwinger equation, the correlation-type theorems can be used

to retrieve the scattering response of the medium by cross-correlations. Unlike

previous formulations of Green’s function retrieval, the extraction of scattered-

wave responses by cross-correlations does not require energy equipartitioning.

Allowing for uneven energy radiation brings experimental advantages to the

retrieval of fields scattered by remote loss-less and/or attenuative scatterers.

These concepts are illustrated with a number of examples, including analytic

solutions to a 1-dimensional scattering problem, and a numerical example in

the context of seismic waves recorded on the ocean bottom.

1 Introduction

Reciprocity theorems have long been used to describe important properties of wave

propagation phenomena. Lord Rayleigh [1] used a local form of an acoustic reci-

procity theorem to demonstrate source-receiver reciprocity. Time-domain reciprocity

theorems were later generalized to relate two wave states with different field, material

and source properties in absorbing, heterogeneous media [2].

Fokkema and van den Berg[3] show that acoustic reciprocity theorems can be used

for modeling wave propagation, for boundary and domain imaging, and for estima-

tion of the medium properties. In the field of exploration seismology, an important

application of convolution-type reciprocity theorems lies in removing multiple reflec-

tions, also called multiples, caused by the Earth’s free-surface [3, 4]. These approaches
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rely on the convolution of single-scattered waves to create multiples, which are then

adaptively subtracted from the recorded data. Other approaches for the elimination

of multiples from seismic data rely on inverse scattering methods [5]. The inverse-

scattering based methodologies are typically used separately from the representation†

theorem approaches [3, 4] in predicting multiples.

Recent forms of reciprocity theorems have been derived for the extraction of

Green’s functions [6, 7], showing that the cross-correlations of waves recorded by

two receivers can be used to obtain the waves that propagate between these receivers

as if one of them behaves as a source. These results coincide with other studies based

on cross-correlations of diffuse waves in a medium with an irregular boundary [8],

caused by randomly distributed uncorrelated sources [9, 10], or present in the coda

of the recorded signals [11]. An early analysis by Claerbout [12] shows that the re-

flection response in a 1D medium can be reconstructed from the autocorrelation of

recorded transmission responses. This result was later extended for cross-correlations

in heterogeneous 3D media by Wapenaar et al. [13], who used one-way reciprocity

theorems in their derivations. Green’s function retrieval by cross-correlations has

found applications in the fields of global [10, 14] and exploration seismology [15, 16],

ultrasonics [17, 18], helioseismology [19], structural engineering [20, 21] and ocean

acoustics [22, 23].

Although the ability to reconstruct the Green’s function between two observation

points via cross-correlations has been shown for special cases by methods other than

representation theorems (e.g., [8, 24, 16]), the derivations based on representation

theorems have provided for generalizations beyond lossless acoustic wave propagation

to elastic wave propagation and diffusion. More general forms of reciprocity relations

have been derived [7, 25, 26] which include a wide range of differential equations such

as the acoustic, elastodynamic, and electromagnetic wave equations, as well as the

diffusion, advection and Schrödinger equations, among others.

†Representation theorems are derived from reciprocity theorems using Green’s functions; e.g., see

Section 3 of this paper.
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In this paper, we derive reciprocity theorems for acoustic perturbed media. The

perturbations of the wavefield due to the perturbation of the medium can be used

for imaging or for monitoring. For imaging, the unperturbed medium is assumed

to be so smooth that is does not generate reflected waves, while discontinuities in

the perturbation account for scattering. In monitoring applications, the perturbation

consists of the time-lapse changes in the medium. Although previous derivations

of reciprocity theorems account for arbitrary medium parameters that are different

between two wave states [2, 3, 7], they do not explicitly consider the special case

of perturbed media or scattering. In perturbed media, there are special relations

between the unperturbed and perturbed wave states (e.g., in terms of the physical

excitation) that make the reciprocity theorems in such media differ in form with

respect to their more general counterparts [3, 7]. Here we focus on deriving and

discussing some of these differences.

One particularly important aspect of studying scattering-based reciprocity lies in

retrieving wavefield perturbations from cross-correlations [7, 25]. As we show here,

wavefield perturbations by themselves do not satisfy the wave equations and thus

their retrieval does not follow directly from earlier derivations. More importantly,

here we demonstrate that the accurate retrieval of scattered waves by correlation

does not require energy equipartitioning as does the retrieval of full-field responses

[24, 7, 25]. This is an important result for dealing with certain remote sensing/imaging

experiments where only a finite aperture of physical sources is available. Moreover,

we show that this result holds both for lossless and attenuative scattering problems.

We first outline general forms of convolution- and correlation-type reciprocity the-

orems by manipulating the perturbed and unperturbed wave equations for two wave

states. Then, we write the more general reciprocity relations as representation the-

orems using the Green’s functions for unperturbed and perturbed waves in the two

states. We show that the convolution-type theorem results in a familiar scattering

integral that describes field perturbations between two observation points. Next we

analyze how the correlation-type theorems can be used to extract the field perturba-
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tions from cross-correlations of observed fields, for different types of media and exper-

imental configurations. Finally, we discuss the applications of these representation

theorems in recovering the perturbation response between two sensors from random

medium fluctuations and from coherent surface sources. Our results are illustrated

by 1-dimensional analytic examples and by a numerical example of the application of

scattering reciprocity to acoustic waves recorded at the ocean bottom.

2 Reciprocity theorems in convolution and corre-

lation form

We define acoustic wave states in a domain V ⊂ Rd, bounded by ∂V ⊂ Rd (Figure 1).

The outward pointing normal to ∂V is represented by n. We consider two wave states,

which we denote by the superscripts A and B, respectively. Each wave state is defined

in an unperturbed medium with compressibility κ0(r) and density ρ0(r); as well as

in a perturbed medium described by κ(r) and ρ(r). Using the Fourier convention

u(t) =
∫

u(ω) exp(−iωt)dω, the field equations for state A in a perturbed medium

are, in the frequency-domain,

∇pA(r, ω) − iωρ(r)vA(r, ω) = 0

∇ · vA(r, ω) − iωκ(r)pA(r, ω) = qA(r, ω) ,

(1)

where pA(r, ω) and vA(r, ω) represent pressure and particle velocity, respectively,

observed at the point r ∈ Rd for a given time-harmonic frequency ω ∈ R. The

perturbed fields for any wave state are p = p0 + pS and v = v0 + vS, where the

subscript S indicates the wavefield perturbation caused by medium changes. The

quantity qA(r, ω) describes the source distribution as a volume injection rate density,

and is the same for both perturbed and unperturbed waves. Our notation is such

that ∇ =
(

∂
∂r1

, . . . , ∂
∂rd

)T

and ∇·v =
∑d

i=1
∂vi

∂ri
. The unperturbed wave equations are

obtained by adding the subscript 0 to coefficients and field quantities in equation 1.
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We assume that no volume forces are present by setting the right-hand side (RHS)

of the vector relation in equation 1 equal to zero. For brevity, we assume that per-

turbations only occur in compressibility, thus ρ = ρ0, but our derivations can be

generalized to include density perturbation as well. We make no restrictions on the

smoothness of the material parameters, i.e., rapid lateral changes and discontinuities

are allowed.

To derive Rayleigh’s reciprocity theorem [1, 2, 3], we insert the equations of motion

and stress-strain relations for states A and B in

vB
0 ·EA

0 + pA
0 EB

0 − vA
0 ·EB

0 − pB
0 EA

0 , (2)

where E and E represent, from equation 1, the equation of motion (first line of the

equation) and the stress-strain relation (second line of the equation), respectively.

For brevity, we omit the parameter dependence on r and ω. From equation 2 we

isolate the interaction quantity ∇ · (pA
0 vB

0 − pB
0 vA

0 ) [2]. Next, we integrate the result

of equation 2 over the domain V and apply Gauss’ divergence theorem. This results

in
∮

r∈∂V

[

pA
0 vB

0 − pB
0 vA

0

]

· dS =

∫

r∈V

[

pA
0 qB

0 − pB
0 qA

0

]

dV ; (3)

which is referred to as a reciprocity theorem of the convolution type [2, 3], because

the frequency-domain products of field parameters represent convolutions in the time

domain. A correlation-type reciprocity theorem [2, 3] can be derived from isolating

the interaction quantity ∇ · (pA
0 vB∗

0 + pB∗
0 vA

0 ) from

vB∗
0 · EA

0 + pA
0 EB∗

0 + vA
0 ·EB∗

0 + pB∗
0 EA

0 , (4)

where ∗ denotes complex conjugation. Subsequent volume integration and application

of the divergence theorem yields

∮

r∈∂V

[

pA
0 vB∗

0 + pB∗
0 vA

0

]

· dS =

∫

r∈V

[

pA
0 qB∗

0 + pB∗
0 qA

0

]

dV , (5)

where complex conjugates translate into time-domain cross-correlations of field pa-

rameters. For this reason, equation 5 is a reciprocity theorem of the correlation type

[2, 3]. Convolution- and correlation-type reciprocity theorems for the perturbed wave
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states (e.g., equation 1) can be expressed simply by removing the subscript 0 from

equations 2 through 5. In equation 5 we assume that κ0 and ρ0 are real quantities

(i.e.; the medium is lossless).

The theorems in equations 3 and 5 hold when the material properties in states

A and B are the same. General reciprocity theorems that account for arbitrarily

different source and material properties between two wave states have been derived

in [2, 3]. Here, we further develop these reciprocity theorems for the special case of

perturbed acoustic media. First, we isolate ∇ · (pAvB
0 − pB

0 vA) from

vB
0 ·EA + pAEB

0 − vA ·EB
0 − pB

0 EA . (6)

After separating this quantity, we integrate over r ∈ V and apply the divergence

theorem. Using p = p0 + pS and v = v0 + vS, and subtracting equation 3, we obtain

∮

r∈∂V

[

pA
SvB

0 − pB
0 vA

S

]

· dS =

∫

r∈V

pA
S qB

0 dV +

∫

r∈V

iω(κ0 − κ)pApB
0 dV , (7)

which is a convolution-type reciprocity theorem for perturbed media.

The correlation-type counterpart of equation 7 can be derived from the interaction

quantity ∇ · (pAvB∗
0 + pB∗

0 vA), which can be isolated from

vB∗
0 · EA + pAEB∗

0 + vA ·EB∗
0 + pB∗

0 EA . (8)

After performing the same steps as in the derivation of equation 7 we obtain

∮

r∈∂V

[

pA
SvB∗

0 + pB∗
0 vA

S

]

· dS =

∫

r∈V

pA
S qB∗

0 dV −

∫

r∈V

iω(κ0 − κ)pApB∗
0 dV , (9)

which is a correlation-type reciprocity theorem for perturbed acoustic media. Again,

we assume that both κ and κ0 are real (i.e., no attenuation).

By interchanging the superscripts in equations 6 and 8 we derive convolution-

and correlation-type reciprocity theorems that relate the perturbations pB
S and vB

S to

pA
0 and vA

0 . These theorems have the same form as the ones in equations 7 and 9,

except A is interchanged with B in equation 7, and with B∗ in equation 9. Although

equations 7 and 8 account for compressibility changes only, they can be modified to
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include density perturbations. Such modification involves adding, to the RHS of the

equations, an extra volume integral whose integrand is proportional to (ρ0 − ρ) and

the wavefields vA and vB
0 (or vB∗

0 ) [3].

3 Scattering-based representations and applications

We introduce the Green’s functions, in the frequency domain, by setting

qA,B = δ(r− rA,B) , rA,B ∈ R
d. (10)

This choice for q allows for expressing the field quantity p in terms of the Green’s

functions G, i.e.,

pA,B(r, ω) = G(rA,B, r, ω) = G0(rA,B, r, ω) + GS(rA,B, r, ω) , (11)

Note that these are the Green’s functions for sources of the volume injection rate

type. The derivation below can also be reproduced using volume forces [6]. It follows

from equations 11 and 1 that vA,B(r, ω) = (iωρ)−1∇G(rA,B, r, ω).

Using these definitions, the convolution-type theorem in equation 7 becomes

GS(rA, rB) =

∫

r∈V

GS(rA, r)δ(r− rB)dV

=

∮

r∈∂V

1

iωρ
[GS(rA, r)∇G0(rB, r) − G0(rB, r)∇GS(rA, r)] · dS

+

∫

r∈V

1

iωρ
G(rA, r)V(r)G0(rB, r)dV ; (12)

where V(r) = ρ ω2 (κ(r) − κ0(r)) is the perturbation operator or scattering potential

[27]. For brevity we omit the dependence on the frequency ω. Now we consider this

equation under homogeneous boundary conditions on ∂V, namely, i) Sommerfeld ra-

diation conditions [6], ii) Dirichlet boundary conditions, i.e., G0,S(r, rA,B) = 0, ∀ r ∈

∂V, and/or iii) Neumann boundary conditions ∇G0,S(r, rA,B) · n = 0, ∀ r ∈ ∂V.

This gives

GS(rA, rB) =

∫

r∈V

1

iωρ
G(rA, r)V(r)G0(rB, r) dV ; (13)
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Equation 13 is the integral equation known as the Lippmann-Schwinger equation [27],

commonly used for modeling and inversion/imaging in scattering problems. When

none of the surface boundary conditions listed above apply, the surface integral of

equation 7 should be added to the right-hand side of equation 13.

Next, we turn our attention to the correlation-type reciprocity theorem in equa-

tion 9. Substituting the Green’s functions (equation 11) for the wavefields p and v

in equation 9 gives

GS(rA, rB) =

∫

r∈V

GS(rA, r)δ(r− rB)dV

=

∮

r∈∂V

1

iωρ
[G∗

0(rB, r)∇GS(rA, r) − GS(rA, r)∇G∗
0(rB, r)] · dS

+

∫

r∈V

1

iωρ
G(rA, r)V(r)G∗

0(rB, r)dV . (14)

The surface integral here does not vanish under a Sommerfeld radiation condition,

but with Dirichlet and/or Neumann boundary conditions we get

GS(rA, rB) =

∫

r∈V

1

iωρ
G(rA, r)V(r)G∗

0(rB, r) dV ; (15)

which is similar to the Lippmann-Schwinger integral in equation 13, except for the

complex conjugate in the RHS. Under Neumann and/or Dirichlet boundary condi-

tions, inspection of equations 13 and 15 states that modeling and inversion/imaging

of scattered fields can be accomplished equally by taking either time-advanced (i.e.,

G0(rB, r), equation 13) or time-reversed (i.e., G∗
0(rB, r), equation 15) fields.

The left-hand side (LHS) of equation 14 describes causal wavefield perturbations

that propagate from rB to rA as if the observation point at rB acts as a source. By

taking equation 14 and interchanging subscripts A by B∗, and taking the complex

conjugate, we obtain

G∗
S(rA, rB) =

∮

r∈∂V

1

iωρ
[G∗

S(rB, r)∇G0(rA, r) + G0(rA, r)∇G∗
S(rB, r)] · dS

+

∫

r∈V

1

iωρ
G∗(rB, r)V(r)G0(rA, r)dV . (16)

There are two important differences between equations 14 and 16 and previous

expressions for Green’s function retrieval [7, 25]. The first difference is that here
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we obtain the wavefield perturbations GS, which by themselves do not satisfy the

acoustic wave equations (e.g., equation 1), from cross-correlations of GS with G0.

Second, the proper manipulation of unperturbed waves G0 and perturbations GS

in the integrands of equations 14 and 16 allows for the separate retrieval of causal

and anticausal wavefield perturbations GS(rA, rB) in the frequency-domain rather

than their superposition. Since the correlation-type representation theorems for G

or G0 [7, 25] result in the superposition of causal and anticausal responses in the

frequency-domain, their time-domain counterparts retrieve two-sides of the signal,

i.e., they retrieve the wavefield at both positive and negative times. Because of this,

we refer to the theorems in refs. [7, 25] as two-sided theorems. The theorems in

equations 14 and 16 recover the time-domain field perturbation response for either

positive (equation 14) or negative (equation 16) times only. Therefore, we call the

theorems in equations 14 and 16 one-sided theorems.

Let us consider a first scenario, which we refer to as Case I (Figure 2), defined by







































































i) V(r) 6= 0; only for r ∈ P; P ⊂ Rd

ii) sing supp(V(r)) 6= 0; (i.e. V generates backscattering)

iii) rB /∈ P; (i.e. perturbations away from receiver acting as source)

iv) κ0(r), ρ0(r) ∈ C∞(Rd); (i.e. smooth background)

v) (i G0(r, rs))
−1∇G0(r, rs) · n(rs) > 0; for (r, rs) ∈ ∂Vb or ∂Vt (i.e. outgoing reference waves)

(i GS(r, rs))
−1∇GS(r, rs) · n(rs) < 0; for (r, rs) ∈ ∂Vb (i.e. ingoing scattered waves).

(17)

In this case, equation 14 becomes

GS(rA, rB) =

∫

r∈(∂Vb ∪ ∂Vt)

1

iωρ
[G∗

0(rB, r)∇GS(rA, r) − GS(rA, r)∇G∗
0(rB, r)] · dS

+

∫

r∈P

1

iωρ
G(rA, r)V(r)G∗

0(rB, r) dV ; (18)

assuming that P ⊂ V (Figure 2b). Note here that the integration is now carried out

for sources on the open top surface ∂Vt and on the bottom surface ∂Vb (Figure 2). If
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P 6⊂ V (Figure 2c), then V(r) = 0 ∀ r ∈ V, which results in

∫

r∈V

1

iωρ
G(rA, r)V(r)G∗

0(rB, r) dV = 0 . (19)

Furthermore, if P 6⊂ V as in Figure 2c, (i G∗
0(r, rs))

−1∇G∗
0(rB, r)·n < 0 and (i G∗

S(r, rs))
−1∇GS(rA, r)·

n > 0 for all r ∈ ∂Vb (see conditions in Appendix A and equation 17), giving

∫

r∈∂Vb

1

iωρ
[G∗

0(rB, r)∇GS(rA, r) − GS(rA, r)∇G∗
0(rB, r)] · dS = 0 , (20)

because the effective contributions of the two integral terms cancel (i.e., at the station-

ary points, both terms have the same phase and opposite polarity). This is addressed

in detail in Appendix A. Therefore, using equations 19 and 20 in equation 18, we

have

GS(rA, rB) =

∫

r∈∂Vt

1

iωρ
[GS(rA, r)∇G∗

0(rB, r) + G∗
0(rB, r)∇GS(rA, r)] · dS . (21)

Since this equation is not affected by any changes to ∂Vb, this result is equally valid

for P ⊂ V as in Figure 2b. This is one of the key results in this paper. For P ⊂ V, the

results in equations 19 and 20 do not hold; by inserting equation 21 in equation 18

we obtain the identity

∫

r∈∂Vb

1

iωρ
[G∗

0(rB, r)∇GS(rA, r) − GS(rA, r)∇G∗
0(rB, r)] · dS =

−

∫

r∈V

1

iωρ
G(rA, r)V(r)G∗

0(rB, r) dV .

(22)

In Case I (Figures 2b and c), it follows from equation 21 that we can retrieve

the exact scattered field GS(rA, rB) between two sensors by cross-correlating refer-

ence and scattered waves only from sources on the open top surface ∂Vt. Moreover,

equations 19, 20 and 22 demonstrate that the volume integral in equation 18 exists

only to account for medium perturbations that lie between surface sources and the

receiver that acts as a pseudo-source (i.e., rB in this case). Therefore, in any practical

configuration of Case I, the bottom-surface sources and the volume integral can sim-

ply be neglected. This also implies that the observation points rA could be anywhere
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(even inside P). We illustrate how this observation holds for different source receiver

configurations with 1-dimensional analytic examples (see below).

In general, the volume integrals in equation 14 cannot be ignored. Let us consider

another example, Case II, illustrated by Figure 3. The configuration is similar to that

of Case I (see conditions in equation 17), but now condition iii) in equation 17 is

modified to rB ∈ P. So for Case II, it is impossible to find source positions on ∂V for

which there are waves whose paths, prescribed by reference waves, are are not affected

by the medium perturbation. Therefore, all integrals in equation 14 must always be

evaluated. Another such example is Case III in Figure 4, where the perturbations

occur over the entire volume, i.e., P ⊆ V (see condition i) in equation 17).

Analytic example: 1-D layered media

As an example of Case I (Figure 2; defined via equation 17) we present an acoustic

one-dimensional model (Figure 5) with a constant wavespeed c0 and wavenumber k0,

except in a layer of thickness H where the wavenumber is given by k1. This defines

V = {z ∈ R1 | z ∈ [z−, z+]}, P = {z ∈ R1 | z ∈ [0, H ]}, and V (z) = k2
0 − k2 ∀ z ∈ P.

It follows from the field equations (e.g, equation 1) that for a 1D model with constant

mass density ρ the pressure satisfies

d2p

dz2
+ κρω2p = iωρq; z ∈ R

1; p ∈ C
1 . (23)

In this wave equation κ is given by

κ =
1

ρc2
=

k2

ρω2
. (24)

For a homogeneous 1D medium with wavenumber k0 the Green’s function solution of

expression (23) is given by

G0(z, z0) =
ρc0

2
eik0|z−z0| . (25)

For the particular case of a 1D medium, the surface integral in equation 18 reduces

to two endpoint contributions and the volume integral becomes a line integral. With

equation 24, equation 18 under conditions set by equation 17 is given in 1D by

GS(zA, zB) = S−(zA, zB) + S+(zA, zB) + V (zA, zB) , (26)
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with S−(rB, rA) the contribution of a source above the receivers

S−(zA, zB) =
2

ρc0
GS(zA, z−)G∗

0(zB, z−) , (27)

S+(zA, zB) the contribution of a source below the receivers

S+(zA, zB) =
2

ρc0

GS(zA, z+)G∗
0(zB, z+) , (28)

and V (zA, zB) the 1D volume integral

V (zA, zB) =
i

ρω

∫ H

0

(k2
0 − k2

1)G(zA, z)G∗
0(zB, z)dz . (29)

The contributions of these different terms are sketched in Figure 5.

We first consider the case in which the two receivers are located above the layer

(zA < 0, zB < 0). The three contributions to the perturbed Green’s function are

sketched in the panels (a)-(c) in Figure 5. As shown in Appendix B the contribution

from the source above the layer (Figure 5, panel (a)) gives the perturbed Green’s

function:

S−(zA, zB) = GS(zA, zB) . (30)

This means that the contribution of this boundary point suffices to give the per-

turbed Green’s function. Note that the perturbed Green’s function accounts for all

reverberations within the layer, as well as for the velocity change in the layer. This

demonstrates, in 1D, the result in equation 21. As with equation 21, the result in

equation 30 holds regardless of where the bottom source z+ is positioned, i.e., whether

P ⊂ V or P 6⊂ V. It follows from a comparison of expressions (26) and (30) that the

contributions of S+ and V cancel:

S+(zA, zB) + V (zA, zB) = 0 . (31)

We show in Appendix B that this equality is indeed satisfied for the one-layer system

considered here. This, in turn, demonstrates the result in equation 22.

Next consider sources on opposite sides of the layer (zA < 0, zB > H) as sketched

in panels (d)-(f) of Figure 5. We show in Appendix B that now the source under the

layer (panel (e) of Figure 5) suffices to give the perturbed Green’s function:

S+(zA, zB) = GS(zA, zB) . (32)
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We show in Appendix B that now the contributions S− and V cancel

S−(zA, zB) + V (zA, zB) = 0 , (33)

which is, of course, required by equation (26). This result is in fact the same as

in equation 21, if only rB were beneath P in Figure 2b and then the contributing

surface would be ∂Vb instead of ∂Vt. Since zB and zA are now in opposite sides of P,

equations 32 and 33 also demonstrate that the general results in equations 21 and 22

hold regardless of the position of the observation points rA. It is interesting to note

that the endpoint contribution S− satisfies

S−(zA, zB) ∼ e−ik0(zA+zB) . (34)

Note that a change in the choice of the coordinate system alters the phase of the

this term. This contribution therefore corresponds to an unphysical arrival with an

arrival time that is determined by the average position of the receivers. In higher

dimensions, this can also be observed by inspecting the volume terms in equations 14

and 16. An improper cancellation of this contribution with the volume term V would

lead to unphysical arrivals in the extracted perturbed Green’s function. It has been

noted earlier that an inadequate source distribution may lead to unphysical arrivals

in the extracted Green’s function [29, 26, 31].

Retrieving GS from random sources in V: energy considerations

Consider equation 15, i.e.

GS(rA, rB) =

∫

r∈V

iω(κ0 − κ)G(rA, r)G∗
0(rB, r)dV . (35)

When Dirichlet and/or Neumann boundary conditions apply (see derivation of equa-

tion 15), the pressure observed at any given observation point ro is given by

p(ro) =

∫

G(ro, r)q(r)dV ; (36)

and likewise for unperturbed waves. q is the source term in equation 1. Next we

consider random uncorrelated sources distributed through space, such that

〈q(r1, ω)q∗(r2, ω)〉 = ∆κ(r1, ω) δ(r1 − r2) |R(ω)|2 ; r1,2 ∈ R
d; (37)
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where ∆κ = κ0−κ and |R(ω)|2 is the power spectrum of a random excitation function;

〈 · 〉 denotes an ensemble average. Note from equation 37 that the source intensity is

proportional to the local perturbation ∆κ (i.e. ∼ V(r)) at every source position. We

then multiply equation 35 by |R(ω)|2 to obtain

GS(rA, rB)|R(ω)|2 = iω

∫ ∫

∆κ(r1, ω) δ(r1 − r2) |R(ω)|2 G(r1, rA)G∗
0(r2, rB)dV1dV2

= iω

〈
∫

G(r1, rA)q(r1)dV1

(
∫

G0(r2, rB)q(r2)dV2

)∗ 〉

. (38)

Using the definitions in equation 37, equation 38 yields

GS(rB, rA) =
iω

|R(ω)|2
〈p(rA)p∗0(rB)〉 . (39)

This equation shows that the perturbation response between rB and rA can be ex-

tracted simply by cross-correlating the perturbed pressure field observed at rA with

the unperturbed pressure measured at rB. This cross-correlation must be compen-

sated for the spectrum |R(ω)|2 and multiplied by iω (i.e., differentiated with respect

to time).

Equation 39 is useful in understanding the energy partitioning requirements for the

reconstruction of the desired scattered-wave response. Let us consider, for example,

equation 39 for the configuration of Case I (Figure 2, equation 17). In that case,

according to equation 37, the volume sources that are locally proportional to the

medium perturbation are restricted to P. This results in a nonzero net flux that

is outgoing energy at the boundary of P (we illustrate this in Figure 6a). As a

consequence, there are also preferred directions of energy flux at the observation points

rA,B. This situation is completely different than the condition of equipartitioning

required for the reconstruction of either G0 or G [7, 25], which requires that the

total energy flux within any direction at the receivers be equal to zero. To describe

scattering, the flux at the sensor acting as a source must be so that it radiates energy

only towards the position of the scatterers. If the scatterers are spatially restricted and

located away from a sensor, then when acting as pseudo-source this sensor only needs

a limited radiation aperture to fully reconstruct the scattered field. This explains

why in the examples of Case I (e.g., equations 21, 30 and 32) the full scattered field
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is retrieved with a finite source aperture, as long as the sensor acting as a source lies

between the physical sources and the scatterers.

4 Scattering in attenuative media

To incorporate energy losses in wave propagation and scattering, we take κ0(r), κ(r) ∈

C (e.g., in equation 1) [28]. By using this in equation 8, equation 9 becomes

∮

r∈∂V

[

pA
SvB∗

0 + pB∗
0 vA

S

]

· dS =

∫

r∈V

pA
S qB∗

0 dV −

∫

r∈V

iω(κ∗
0 − κ)pApB∗

0 dV ; (40)

where now we have κ∗
0 instead of simply κ0 (equation 9). Then, using Green’s

functions (equations 10 and 11) and defining the complex scattering potential as

V(r) = ω2ρ [ℜ(κ − κ0) + iℑ(κ − κ0)] (where ℜ and ℑ denote real and imaginary com-

ponents, respectively), we obtain

GS(rA, rB) =

∮

r∈∂V

1

iωρ
[G∗

0(rB, r)∇GS(rA, r) − GS(rA, r)∇G∗
0(rB, r)] · dS

+

∫

r∈V

1

iωρ
G(rA, r)ℜ{V(r)}G∗

0(rB, r)dV

+

∫

r∈V

1

ωρ
G(rA, r)ℑ{V(r)}G∗

0(rB, r)dV

−

∫

r∈V

2ωℑ{κ0}G(rA, r)G∗
0(rB, r)dV ; (41)

The first volume integral in equation 41 yields the volume integral in equation 14,

while the other volume integral accounts for scattering attenuation. Note that in

attenuative media, even if there’s no perturbation (i.e., V = 0), the last volume

integral in equation 41 is nonzero. This case is analyzed by Snieder [28].

Let us revisit Case I (Figure 2, equation 17), but now consider it in attenuative
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media, i.e.,



































































































i) ℜ{V(r)} 6= 0,ℑ{V(r)} 6= 0; only for r ∈ P; P ⊂ Rd

ii) sing supp(ℜ{V(r)}) 6= 0; (i.e. V generates backscattering)

iii) rB /∈ P; (i.e. perturbations away from receiver acting as source)

iv) κ0(r), ρ0(r) ∈ C∞(Rd); (i.e. smooth background)

v) (i G0(r, rs))
−1∇G0(r, rs) · n(rs) > 0; for (r, rs) ∈ ∂Vb or ∂Vt (i.e. outgoing reference waves)

(i GS(r, rs))
−1∇GS(r, rs) · n(rs) < 0; for (r, rs) ∈ ∂Vb (i.e. ingoing scattered waves);

vi) ℑ{κ0(r)} = 0; ∀r ∈ Rd; or, (i.e. background is lossless)

vi′) ℑ{κ0(r)} 6= 0; only for r ∈ P (i.e. background attenuation is restricted to P).

(42)

Next, under the same arguments as those used to derive equations 19 through 21, it

immediately follows that, for P 6⊂ V (Figure 2c),

0 =

∫

r∈V

1

iωρ
G(rA, r)ℜ{V(r)}G∗

0(rB, r)dV

+

∫

r∈V

1

ωρ
G(rA, r)ℑ{V(r)}G∗

0(rB, r)dV

−

∫

r∈V

2ωℑ{κ0}G(rA, r)G∗
0(rB, r)dV ; (43)

and that therefore equations 20 and 21 are also valid for scattered waves in attenuative

media. By extension to when P ⊂ V in Case I (Figure 2b), it is also true that

∫

r∈∂Vb

1

iωρ
[G∗

0(rB, r)∇GS(rA, r) − GS(rA, r)∇G∗
0(rB, r)] · dS =

=

∫

r∈V

1

iωρ
G(rA, r)ℜ{V(r)}G∗

0(rB, r)dV

+

∫

r∈V

1

ωρ
G(rA, r)ℑ{V(r)}G∗

0(rB, r)dV

−

∫

r∈V

2ωℑ{κ0}G(rA, r)G∗
0(rB, r)dV . (44)

Thus the general result of equation 21, discussed in the previous section, is also valid

for attenuative scattered waves, regardless of the choice of configurations for ∂Vb or

rA (Figure 2). So just as in lossless media, it is possible to retrieve the full scattered
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response generated by soft/attenuative targets by cross-correlation of scattered and

reference waves over a limited source aperture.

To understand why the result above holds for attenuative media, consider applying

homogeneous Dirichlet or Neumann conditions on ∂V in equation 41, which yields

GS(rA, rB) =

∫

r∈V

1

iωρ
G(rA, r)ℜ{V(r)}G∗

0(rB, r)dV

+

∫

r∈V

1

ωρ
G(rA, r)ℑ{V(r)}G∗

0(rB, r)dV

−

∫

r∈V

2ωℑ{κ0}G(rA, r)G∗
0(rB, r)dV . (45)

We now consider random volume sources similar to equation 37 but now described

by

〈q(r1, ω)q∗(r2, ω)〉 = Q(r1) δ(r1 − r2) |R(ω)|2 . (46)

Note that at every point in the volume, the quantity Q(r) = ∆κ′(r) = κ∗
0(r)−κ(r) in

equation 46 describes sources which are locally proportional to i) ℜ{V}, ii) ℑ{V} and

iii) ℑ{κ0}, respectively. Through a derivation analogous to equation 38, equation 45

gives

GS(rB, rA) =
iω

|R(ω)|2
〈p(rA)p∗0(rB)〉 , (47)

same as in equation 39. For the conditions defining Case I in attenuative media

(equation 42), the result in equation 47 implies a flux of outgoing energy at the

boundary of P, same as in the lossless case (Figure 6a). As with lossless scattering, the

receiver that acts as a pseudo-source needs only a limited radiation aperture to retrieve

the full attenuative scattered-wave response for Case I; this is why the limited source

aperture used in equation 21 also accounts for attenuative scattering. This scenario

is no longer true, however, if the background is attenuative, i.e., if conditions vi) or

vi′) in equation 42 do not hold. In that case, the result in equation 47 requires the

ignition of volume sources everywhere that are locally proportional to the background

loss parameters. This leads to an interchange of energy through the boundary of P,

as depicted in Figure 6b. This in turn implies that, although energy equipartitioning

is still not a necessary requirement, the correct pseudo-response between cannot be
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retrieved with a limited radiation aperture; consequently, equation 21 would no longer

hold.

5 Application example: ocean-bottom seismics

Here we discuss the application of scattering reciprocity to seismic data acquired on

the ocean bottom. A general concept of ocean-bottom seismic data acquisition is

shown in Figure 7. There, active physical sources are placed on ∂Vt and sensors are

positioned on the seafloor. The objective of ocean bottom seismic experiments is

to characterize the scattering potential in the subsurface (i.e. in P, Figure 7) from

the recorded scattered waves. Since the surface of the ocean acts as a perfectly re-

flecting boundary for acoustic waves that propagate in the experiment in Figure 7,

the recorded data contains not only the desired subsurface scattered waves, but also

the reverberations that occur between the ocean surface, the sea bottom and sub-

surface scatterers. These reverberations become a strong source of coherent noise in

extracting information about the Earth’s interior. Here we show that the scattering-

based reciprocity relations developed in this paper can be used to remove the effect of

surface-related reverberations from ocean-bottom seismic data; thus facilitating the

retrieval of information associated only with subsurface scattered waves.

Scattered waves described by reciprocity relations such as in equation 18 satisfy

boundary and initial conditions imposed on ∂V (or in Case I, in ∂Vb ∪ ∂Vt), but

can be used to relate different wave states that have varying material properties

and/or boundary conditions outside of V [2, 3]. In the particular case of ocean-

bottom seismics, the reciprocity relation in equation 18 can relate scattered waves in

the presence of the ocean’s free-surface† with waves without the free-surface. Note

that the result in equation 21 is approximate for the case in Figure 7 because it

violates condition v): this leads to the incomplete cancellation of terms necessary for

equation 20 to hold. Furthermore, dipole acoustic sources are typically not available

†the term “free-surface” indicates that homogeneous Dirichlet conditions apply on the ocean

surface.
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in ocean-bottom seismic experiments. However, many such experiments do measure

dual fields, i.e. pressure and particle velocity, at the sea bottom. Since in the given

experiment the source surface is flat and horizontal i.e. n = {0, 0, n3} ∀ r ∈ ∂Vt,

then v(r, rB,A) · dS = vi=3(r, rB,A) dS. In the absence of vertically-oriented dipole

sources on ∂Vt, we replace them by vobs
i=3 which is the response of monopole sources

observed in the vertical component of the particle velocity field at the ocean bottom.

This gives, after equation 21,

GS(rA, rB) ≈

∫

r∈∂Vt

F(ω)
[

pS(rA, r)vobs ∗
3,0 (rB, r) + p∗0(rB, r)vobs

3,S (rA, r)
]

dS , (48)

where F(ω) is a signal-shaping filter that accounts for the imprint of the source-

time excitation function. Dipole sources on ∂Vt can only be exactly replaced by

observed particle velocities on the seafloor if the surrounding medium were homoge-

neous. Therefore, using the observed quantities vobs
3 in equation 48 introduces errors

in retrieving GS(rA, rB). Because the material heterogeneity in our experiment is

associated with the scattering potential in P (Figure 7), the errors introduced by re-

placing dipole sources with vobs
3 are of higher-order in the scattered waves (i.e., they

will be relatively weak in amplitudes). Most previous applications of retrieving inter-

receiver Green’s functions from seismic data rely on the cross-correlations of pressure

fields only, i.e.,

GS(rA, rB) ≈

∫

r∈∂Vt

2

ρc
F(ω) pS(rA, r)p∗0(rB, r) dS ; (49)

which assumes a far-field/Sommerfeld radiation boundary condition e.g. [6]. In the

example we present here we show and discuss the differences of using equations 48

and 49 for the extraction of the multiple-free scattered-wave response between ocean-

bottom seismometers.

The 2-dimensional numerical simulation is done on the model shown in Figure 7b.

This model represents the perturbed medium; the unperturbed medium consists only

of the 0.2 kilometer-deep water layer and a homogeneous half-space with a constant

wavespeed of 1800 m/s. The medium perturbation thus consists of all scatterers and

interfaces lying deeper than 0.3 km (Figure 7b). Density is kept constant at 103
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kg/m3. We model the data using a finite-difference solution to the acoustic wave

equation (e.g., equation 1). In the numerical experiment, pressure (i.e. monopole)

sources are placed on a 0.01 km deep horizontal line with a constant lateral spacing

of 4 meters; pressure and particle velocity fields are measured by a line of sensors on

the water bottom (i.e. at z =0.2 km, Figure 7b) positioned at every 2 m. With this

experiment configuration, we model the acoustic responses in both the reference and

perturbed models. All of the data used in for retrieving the scattered-wave Green’s

functions between ocean-bottom sensors are modeled with free-surface (i.e., Dirichlet)

boundary conditions on the top of the model.

In Figures 8c and 8d we show the result of extracting the scattered-wave response

between receivers using equations 48 and 49, respectively. In both Figures, the panels

represent the responses recorded at all receivers (i.e., for varying rA), excited by a

pseudo-source synthesized in fixed receiver at rB =(0.3 km,0.2 km) (grey triangle in

Figure 7b). While Figures 8c and 8d clearly show that the responses obtained via

equations 48 and 49 are different, it is important to note that the input field quantities

used for evaluating the integrands satisfy the same boundary conditions. On the other

hand, the responses of actual sources placed at (0.3 km,0.2 km) depicted in Figures 8a

and 8b satisfy different boundary conditions: the pressure field in Figure 8a satisfies

G0,S(r) = 0 at the sea surface, (i.e., free-surface conditions; same as the input fields

for Figures 8c and 8d), while for the response in Figure 8b G0,S(r) 6= 0 on the

ocean surface. The response obtained by equation 48 (Figure 8c) approximates that

of Figure 8b, whereas the response generated with equation 49 (Figure 8d) is close

to that of Figure 8a. In replacing the dipole sources required by equation 21 by

the vertical component of particle velocity in equation 48, we achieve an effective

cancellation between in- and out-going waves at ∂Vt that results in approximating

the scattered-wave response without the free-surface condition present in the original

experiment. On the other hand, by cross-correlating only pressure scattered and

reference waves (equation 49), we assume that there are only out-going waves at ∂Vt

and thus in- and out-going terms do not cancel. Consequently, when using equation 49

we retrieve scattered waves that approximate the true perturbations in the presence
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of free-surface boundary conditions (compare Figures 8a and d).

With this numerical example we demonstrate that our formulations of scattering-

based reciprocity can be used to extract scattered waves between receivers in ocean-

bottom seismic experiments. Moreover, we show that by using different combinations

of single- or dual-field measurements we extract scattered fields that satisfy different

boundary conditions. This is a particularly important step in isolating/separating

the reverberations caused by the water surface from ocean-bottom seismic data.

6 Discussion and Conclusion

In this paper, we present a suite of integral reciprocity equations for acoustic scat-

tering that can be useful both for theoretical considerations and for applications in

retrieving scattered waves via correlations and possibly in imaging/inversion of scat-

tered fields.

A fundamental result in this paper is that the retrieval of scattered waves by

cross-correlations or cross-convolutions does not necessarily rely on a closed surface

integral or on invoking energy equipartitioning. This is an important difference be-

tween the work we present here and previous work in the field of Green’s function

retrieval from diffuse-wave correlation [9, 17, 30] or from correlation of deterministic

wavefields [6, 25], which do require energy equipartitioning. Most previous studies

show that equipartitioning of energy is necessary to recover the superposition of the

causal and anti-causal wavefields G or G0 (i.e., unperturbed or perturbed). Since for

scattered fields equipartitioning is not a necessary requirement, our expressions isolate

the wavefield perturbations GS separately from its anticausal counterpart G∗
S. More-

over, for systems that are invariant under time reversal, Green’s function retrieval by

wavefield cross-correlations require only a surface integration [30, 6, 25]; whereas the

retrieval of the perturbations GS from correlations of wavefield perturbations with

unperturbed wavefields requires additional volume integrals. Our analysis shows that

in fact these volume terms counteract the contributions of closed surface terms, which
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reaffirms that, for arbitrarily spatially-varying scattering potentials, the retrieval of

scattered fields relies on uneven energy partitioning.

This requirement of uneven radiation for the retrieval of scattered waves can be

advantageous for certain experiment configurations. In the case of scattered waves

generated by remote perturbations, we demonstrate that the scattered field propagat-

ing between receivers is fully retrieved by correlating scattered and reference waves

generated by sources in an open surface. Again, previous general formulations of

Green’s function retrieval [24, 7, 25] state that sources must surround the receivers to

correctly retrieve, via cross-correlations, the waves that propagate between receivers.

In the absence of a closed source aperture, the retrieved responses are prone to dy-

namic distortions and artifacts [26, 31]. This becomes a limitation for the retrieval

of receiver responses by correlations in experiments where surrounding the medium

with sources is not practical. If, however, the retrieval of scattered waves is the ob-

jective, then our results shows that the scattered field can be accurately retrieved

with a limited source array (for the configuration in Figure 2). This is an impor-

tant experimental advantage brought by the analysis of scattering-based reciprocity.

Furthermore, it is important to note that these results hold both for lossless and

attenuative scattering.

In this paper we present a direct application of scattering reciprocity to ocean-

bottom seismic data, where we retrieve subsurface scattered waves from ocean-bottom

receivers without the interference of reverberations generated by the water surface.

Other applications of the scattering reciprocity relations to retrieving scattered signals

have been proposed in [31, 32, 33]. In the context of retrieving scattered waves by

cross-correlation, the theory we discuss also draws experimental validation from the

work of other authors. In particular, we point out the studies performed by Bakulin

and Calvert [16] and by Mehta et al. [34], with their so-called Virtual Source method.

Their methods explicitly correlate transmission and reflection responses to extract

desired scattered waves, and directly verify our results. Note that although most of

the examples cited here come from the field of geophysics, our results are immediately
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applicable to other fields in acoustics such as physical oceanography, laboratory and

medical ultrasonics, and non-destructive testing.

While the derivations and examples presented here heavily focus on the application

of scattering-based reciprocity to retrieving scattered responses by cross-correlations,

we point out some possible applications to inverse problems. One such application

is the use for the exact form of the correlation-type representation theorems for the

calculation of Fréchet derivatives [35], which consist of the partial derivatives of the

wavefield perturbations with respect to the medium perturbations. These derivatives

can be directly derived from the theorems we provide here. These derivatives are

important for the computation of sensitivity kernels used in waveform inversion [35,

37], in imaging [36] or in formulations of wave-equation based tomography [38, 37].

Still in the context of inverse scattering [36, 5]. The theory we present here is used

in [39] for establishing formal connections between different approaches in imaging

such as seismic migration [40, 44], time-reversal methods [41, 42] and image-domain

inverse scattering [43, 44].

Apart from imaging applications, our results (both in terms of retrieving wavefield

perturbations and for estimating medium perturbations) can be used for monitoring

temporal changes in the medium. In geoscience, this could be applied to remotely

monitoring the depletion of aquifers or hydrocarbon reservoirs; or monitoring the

injection of CO2 for carbon sequestration. In material science, our results can be

used to monitor material integrity with respect, for example, to temporal changes in

temperature or changes due to crack formation. The detection of earthquake dam-

age is a potential application in the field of structural engineering. Within medical

imaging applications, our expressions can be tailored, for instance, to observe the evo-

lution of living tissue (e.g., transplants, tumors) from a series of time-lapse ultrasonic

measurements.
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[20] R. Snieder and E. Şafak. Bull. Seismol. Soc. Am., 96:586-598, 2006.

[21] D. Thompson and R. Snieder. The Leading Edge, 25:1093, 2006.

[22] P. Roux, W.A. Kuperman, and NPAL Group. J. Acoust. Soc. Am., 116:1995-

2003, 2004.

[23] K.G. Sabra, P. Roux, A.M. Thode, G.L. D’Spain, and W.S. Hodgkiss. IEEE J.

of Oceanic Eng., 30:338-347, 2005.

[24] R.L. Weaver and O.I. Lobkis. J. Acoust. Soc. Am., 116:2731–2734, 2004.

[25] R. Snieder, K. Wapenaar, and U. Wegler. Phys. Rev. E, 75:036103, 2007.

[26] R.L. Weaver. Wave Motion, 45:596–604, 2008.

[27] L.S. Rodberg and R.M. Thaler. Academic Press, New York, 1967.

[28] R. Snieder. J. Acoust. Soc. Am., 121:2637–2643, 2007.

[29] R. Snieder, K. van Wijk, M. Haney and R. Calvert. Phys. Rev. E, 78:036606,

2008.



I. Vasconcelos, R. Snieder and H. Douma – 26 – Scattering representations in acoustic media

[30] E. Larose, L. Margerin, A. Derode, B. van Tiggelen, M. Campillo, N. Shapiro,

A. Paul, L. Stehly and M. Tanter. Geophysics, 71:SI11-SI21, 2006.

[31] I. Vasconcelos and R. Snieder. Geophysics, 73:S115, 2008.

[32] I. Vasconcelos, R. Snieder and B. Hornby. Geophysics, 73:S157, 2008.

[33] I. Vasconcelos, R. Snieder, S.T. Taylor, P. Sava, J.A. Chavarria and P. Malin.

EOS Trans. Am. Geophys. Union, 89(38):349, 2008.

[34] K. Mehta, A. Bakulin, J. Sheiman, R. Calvert, and R. Snieder. Geophysics,

72:V79–V86, 2007.

[35] A. Tarantola. Elsevier, Amsterdam, 1987.

[36] D. Colton and R. Kress. Springer-Verlag, Berlin, 1992.

[37] J. Tromp, C. Tape and Q. Liu. Geophys. J. Intl., 160:195–216, 2005.

[38] M. Woodward. Geophysics, 57:15–26, 1992.

[39] I. Vasconcelos. Soc. Expl. Geophys. Expanded Abstracts, 27:2927, 2008.

[40] J.F. Claerbout. Blackwell Publishing, 1985.

[41] M. Fink, W.A. Kuperman, J.-P. Montagner and A. Tourin. Springer-Verlag,

Berlin, 2002.

[42] J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Solna. Springer, New York,

2007.

[43] G. Beylkin. J. Math. Phys., 26:99–108, 1985.

[44] C. Stolk and M. de Hoop. Wave Motion, 43:579–598, 2003.



I. Vasconcelos, R. Snieder and H. Douma – 27 – Scattering representations in acoustic media

A Conditions for a vanishing integral over ∂Vb

To determine the situation when the surface integral for the bottom surface in equa-

tion 20 vanishes, we first observe that in general this surface integral cannot vanish.

For example, consider the case when there is a free surface present above the bottom

surface ∂Vb (Figure 9). Then there will be stationary sources on the bottom surface

that contribute to the construction of the scattered field with a source at location

rB. The drawn propagation paths in Figure 9 are the outermost paths that are still

needed to illuminate the scattering region with sources on the surface ∂Vb, and indeed

all the sources in between sleft and sright on the integration surface give stationary

contributions to the surface integral.

To see in which special cases the surface integral does vanish, we follow [6] and

decompose the wavefield into in-going and out-going waves of the volume V. That is

we assume

G0 = Gin
0 + Gout

0 , (50)

GS = Gin
S + Gout

S . (51)

Using this in equation 20, it follows that

∫

∂Vb

1

iωρ

{

G∗
0,B∇GS,A − GS,A∇G∗

0,B

}

· dS =

∫

∂Vb

1

iωρ

{

(Gin∗

0,B + Gout∗

0,B )(∇Gin
S,A + ∇Gout

S,A)

− (Gin
S,A + Gout

S,A)(∇Gin∗

0,B + ∇Gout∗

0,B )
}

· dS ,

(52)

where we introduced the shorthand notation G(S,0),(A,B) = G(S,0)(r(A,B), r) with the

subscripts (S, 0) indicating either the scattered (S) or background (0) Green function,

while the subscripts (A, B) denote the receiver location at either rA (A) or rB (B).

Following again [6] and assuming that the medium is locally smooth around ∂Vb,

we can approximate the gradients by a multiplication of the Green function with

±i| cos α(x)|ω/c(x) where c(x) is the local velocity at ∂Vb and α(x) the local angle

between the ray and the normal on ∂Vb. The minus sign relates to waves traveling

into V while the plus sign relates to waves traveling out of V. By the exact same
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reasoning as [6] it follows that at the stationary source locations on ∂Vb the absolute

values of the cosines of the ray angles are the same for GS,A and G0,B. That means

that contributions of the terms in equation 52 with products of in- and out-going

Green functions give exactly opposite contributions. Therefore these ”cross”-terms

do not contribute to the surface integral, leaving the surface integral as
∫

∂Vb

1

iωρ

{

G∗
0,B∇GS,A − GS,A∇G∗

0,B

}

·dS =

∫

∂Vb

2

iωρ

{

Gin
S,A∇Gin∗

0,B + Gout
S,A∇Gout∗

0,B

}

·dS.

(53)

From equation 53 it is easy to see when the surface integral vanishes. The only

meaningful situations to consider are the cases

1. Gin
S,A = 0 and n̂ · ∇Gout

0,B = 0

2. Gout
S,A = 0 and n̂ · ∇Gin

0,B = 0

where n̂ is the outward pointing normal on ∂Vb. We are interested in analyzing when

the surface integral vanishes if the surface ∂Vb is above the perturbation volume P. In

this situation case i) is not really relevant, as then there would be no energy scattering

into the volume V, which is not a common situation encountered. Therefore case ii)

provides the relevant conditions when the surface integral vanishes. This means that

there cannot be any scattered energy travelling outward of V through ∂Vb. That

is, scattered energy is not allowed to change propagation direction from into V to

out of V above ∂Vb (or from up to down in case ∂Vb is horizontal). Moreover, the

background wavefield cannot change propagation direction from out of V to into V

below ∂Vb (or from down to up in case ∂Vb is horizontal). Both these conditions are

summarized in Figure 10.

B Analysis of the scattered-wave responses for the

1-layer model

In this appendix we derive Green’s function extraction for the 1D model of figure

5. Within every layer, the solution consists of the superposition of waves exp(±ikz),
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with k the wave number in each layer. Since dρ(z)
dz

= 0, G(z, z0) ∈ C2(R1). For a

source above the layer (z0 < 0) this leads to the following exact Green’s function for

z < 0

G(z, z0) =
ρc0

2
eik0|z−z0| +

ρc0

2

i

2D

(

k1

k0
−

k0

k1

)

sin k1H e−ik0(z+z0) , (54)

while for 0 < z < H

G(z, z0) =
ρc0

2

1

2D

(

1 +
k0

k1

)

eik1(z−H)−ik0z0

+
ρc0

2

1

2D

(

1 −
k0

k1

)

e−ik1(z−H)−ik0z0 ,
(55)

and for z > H

G(z, z0) =
ρc0

2

1

D
eik0(z−H−z0) , (56)

with

D = cos k1H −
i

2

(

k1

k0
+

k0

k1

)

sin k1H . (57)

For z < 0 the perturbed field is given by the last term of expression (54), while for

z > H the perturbed field GS = G − G0 follows by subtracting expressions (56) and

(25):

GS(z, z0) =
ρc0

2

1

D
eik0(z−z0)

(

e−ik0H − D
)

, (58)

We first compute the contribution S− when both receivers are above the layer

(panel (a) of figure 5). Inserting the last term of expression (54) and equation (25)

into expression (27) gives

S−(zB, zA) =
2

ρc0

ρc0

2

i

2D

(

k1

k0

−
k0

k1

)

sin k1H e−ik0(zA+z−) ρc0

2
e−ik0(zB−z−)

=
ρc0

2

i

2D

(

k1

k0
−

k0

k1

)

sin k1H e−ik0(zA+zB) .

(59)

A comparison with the last term of expression (54) shows that S− gives the perturbed

Green’s function (expression (30)). The contribution from a source below the layer

(panel (b) of figure 5) follows by inserting expressions (25) and (58) into equation
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(28)

S+(zB, zA) =
2

ρc0

ρc0

2

eik0(z+−zA)

D

(

e−ik0H − D
) ρc0

2
e−ik0(z+−zB)

=
ρc0

2

eik0(zB−zA)

D

(

e−ik0H − D
)

.

(60)

To get the volume term (panel (c) of figure 5) we insert expressions (25) and (55)

into (29) to give

V (zB, zA) =
i

ρω

(

k2
0 − k2

1

) ρc0

2

1

2D

×

∫ H

0

[(

1 +
k1

k0

)

eik1(z−H)−ik0zA +

(

1 −
k1

k0

)

e−ik1(z−H)−ik0zA

]

ρc0

2
e−ik0(z−zB)dz .

(61)

Carrying out the z-integration and rearranging terms gives

V (zB, zA) = −
ρc0

2

1

2D
eik0(zB−zA)

×

[(

1 + 1
2

(

k0

k1
+

k1

k0

))

(

e−ik0H − e−ik1H
)

+

(

1 − 1
2

(

k0

k1
+

k1

k0

))

(

e−ik0H − eik1H
)

]

.

(62)

The term between square brackets satisfies

[· · · ] = 2e−ik0H −
(

eik1H + e−ik1H
)

+ 1
2

(

k0

k1

+
k1

k0

)

(

eik1H − e−ik1H
)

= 2
(

e−ik0H − D
)

,

(63)

where expression (57) is used in the last identity. Using this result gives

V (zB, zA) = −
ρc0

2

1

D

(

e−ik0H − D
)

eik0(zB−zA) . (64)

A comparison with equation (60) proves expression (31).

We next consider the situation where the receivers are on opposite sides of the

layer (panels (d)-(f) in figure 5). The term S+ (panel (e)) follows by combining

expressions (25), (28) and (58) to give

S+(zB, zA) =
2

ρc0

ρc0

2

1

D
eik0(z+−zA)

(

e−ik0H − D
) ρc0

2
e−ik0(z+−zB)

=
ρc0

2

1

D
eik0(zB−zA)

(

e−ik0H − D
)

.

(65)
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A comparison with expression (58) shows that this equals the field perturbation (ex-

pression (32)). The contribution from the other endpoint (panel (d) in figure 5)

follows by combining expressions (25), (27) and (54)

S−(zB, zA) =
2

ρc0

ρc0

2

i

2D

(

k1

k0

−
k0

k1

)

sin k1H e−ik0(z−+zA) ρc0

2
e−ik0(zB−z−)

=
ρc0

2

i

2D

(

k1

k0
−

k0

k1

)

sin k1H e−ik0(zA+zB) .

(66)

The volume term (panel (f) of figure 5) follows from combining expressions (25), (29),

and (55)

V (zB, zA) =
i

ρω

(

k2
0 − k2

1

) ρc0

2

1

2D

×

∫ H

0

[(

1 +
k0

k1

)

eik1(z−H)−ik0zA +

(

1 −
k0

k1

)

e−ik1(z−H)−ik0zA

]

ρc0

2
e−ik0(zB−z)dz .

(67)

Carrying out the z-integration and using that ω/k0 = c0 gives

V (zB, zA) =
i

ρω
(k2

0 − k2
1)

(ρc0

2

)2 1

2D

2

k1
sin k1H e−ik0(zA+zB)

= −
ρc0

2

i

2D

(

k1

k0
−

k0

k1

)

sin k1H e−ik0(zA+zB) .

(68)

Together with equation (66) this proves equation (33).
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Figure 1: Illustration of the domain used in the reciprocity theorems. The domain

consists of a volume V, bounded by ∂V. The unit vector normal to ∂V is represented

by n. The wave states A and B are represented by receivers placed at rA (white

triangle) and rB (grey triangle), respectively. The solid arrows denote the stationary

paths of unperturbed waves G0, propagating between the receivers and an arbitrary

point r on ∂V.

(a) (b) (c)

Figure 2: Schematic illustrations of configurations for Case I. Medium perturbations

are restricted to the subdomain P, which is placed away from the observation points.

By infinitely extending the sides of ∂V, the closed surface integral can be replaced by

an integral over r ∈ ∂Vb ∪ ∂Vt, as portrayed in panels (a) and (b). In our discussion,

we fix the sets ∂Vt and P, and have two choices for ∂Vb such that in (b) P ⊂ V, and

in (c) P 6⊂ V.
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Figure 3: Cartoon illustrating Case II. The medium configuration in this case is the

same as for Case I (Figure 2), but now one the receivers at rB is placed inside the

perturbation volume P. Solid arrows illustrate stationary paths of reference waves,

and the dashed arrow illustrates the path of a scattered wave. Here r1 illustrates a

source position that yields a stationary contribution to the integrand in equation 21.

Figure 4: Schematic representation of Case III, where P ⊆ V, i.e., the medium

perturbation occupies all of the volume V. As in Figure 2, solid and dashed arrows

denote unperturbed waves and field perturbations, respectively.
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Figure 5: Location of the receiver coordinates zA and zB and the source coordinates

for the example of the 1-layer model. This being a 1-dimensional example of Case

I (Figure 2), the medium perturbation (in grey shading) is compactly supported in

the interval [0, H ] where the jump in wavenumber is given by k1 − k0. S−, S+ and

V denote the 1-D contributions of the top source, bottom source and line integral,

respectively. The three leftmost vertical lines represent the case where both receivers

lie above the perturbations, while panels (d)-(f) denote the case where there is a

receiver on either side of the perturbation.
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a) b)

Figure 6: Illustrations of energy considerations for extracting scattered waves from

random volume sources in V. To particularly highlight that equipartitioning is not

a requirement for the retrieval of scattered waves, we use the medium configuration

of Case I (Figure 2). Panel (a) represents the case where energy is purely out-going

(indicated by solid arrows) from P; this is the case for scattering in lossless media,

or when ℑ{V(r)} and ℑ{κ0(r)} are nonzero only for r ∈ P. In the case of general

attenuative materials, depicted in (b), where ℑ{κ0(r)} 6= 0 ∀ r ∈ V, there is an

exchange of in- and out-going energy on the boundary ∂P.
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(a) (b)

Figure 7: Application of scattering reciprocity to acoustic waves recorded on the

ocean bottom. The cartoon in (a) relates the specific case of ocean-floor seismology

with the configuration of Case I (Figure 2). Panel (b) shows the perturbed acoustic

wavespeed model used in the numerical experiment. In the model, the black dotted

line represents the instrumented ocean bottom, the white dotted line depicts the

positions of physical sources, and the triangle represents the location of the pseudo-

source in the numerical examples. Note that, in the model in (b), the perturbations

in P consist of the scatterers and interfaces located below the depth of 0.3 km. The

color bar portrays model wavespeeds in km/s.
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Figure 8: Comparisons of true scattered-wave responses with pseudo-source responses

obtained by cross-correlating reference and scattered waves. The true scattered-wave

responses for a physical source at (0.3 km, 0.2 km) (see Figure 7b) are displayed in (a)

modeled with a free-surface (at z = 0 km), and in (b), where it is modeled without a

free-surface. The responses in (c) and in (d) correspond to pseudo-sources retrieved

via cross-correlations. The result in (c) is obtained with equation 48; while (d) results

from applying equation 49. It is important to note that the input data to both (c)

and (d) were modeled with a free-surface.

Figure 9: Illustration of stationary points on the bottom surface ∂Vb that yield

physical contributions to scattered waves that propagate between the observation

points.
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(a) (b)

Figure 10: Cartoons representing the conditions required for the bottom surface in-

tegral to vanish in the case of equation 20. Panel (a) states that ingoing reference

waves due to sources on ∂Vb must be absent, whereas (b) indicates that there should

be no outgoing scattered waves excited by sources on ∂Vb.


